Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Flexibility, rather than perfection, helps in the fight against pathogens

19.02.2016

Flexibility may be a crucial advantage in the defence against pathogens

When a foreign substance invades a body, the body produces antibodies that recognise and fight the intruder by means of antibodies that bind to a specific portion of the intruder - the antigen. Memory cells are then formed in the course of the defence reaction.


Mesenteric lymph node of a Confetti mouse infected with Friend retrovirus. The clusters of colored cells are germinal centers showing different levels of color dominance

© Gabriel D. Victora

These cells make sure that the body can respond more quickly and more strongly to any recurring attack of the same pathogen. According to a study just published in "Science" by scientists of the Whitehead Institute for Biomedical Research, Cambridge, USA, and the Helmholtz Centre for Infection Research (HZI) in Braunschweig, Germany, the common notion, i.e. that the body produces antibodies with a perfectly fitting key-lock design for a specific antigen exclusively, is not true.

Antibodies are produced by a certain type of white blood cells called B-cells or B-leukocytes which patrol our lymph nodes in search of pathogens every day. When a B-cell binds to an antigen by means of its receptor, the B-cell either produces a reasonably well-fitting antibody directly or it gets involved in the formation of a germinal centre. Germinal centres are antibody training sites:

The B-cells proliferate in them, diversify their antibodies through mutation and optimise them through selection. "In the course of time, the affinity of the antibodies for the antigens increases. Basically, only the most effective antibodies persist. This evolutionary process is called affinity maturation," says Michael Meyer-Hermann, who is the director of the "System Immunology" department at the HZI.

Meyer-Hermann and his colleague, Gabriel Victora, from the Whitehead Institute for Biomedical Research aimed to test this theory in the scope of a project funded by the Human Frontiers Science Program in order to find out more about the process of affinity maturation. For this purpose, the researchers combined single-cell sequencing with brainbow experiments, a technique that is common in brain and developmental research. In this technique, mother cells are stained with random fluorescent proteins, which they then pass on to their daughter cells.

"This allows us to recognise exactly which lineage the cells have come from, and which founder cells dominate the germinal centre," says Meyer-Hermann. "According to what was known, we presumed that only a few cells established the germinal centre and that the strong selection pressure would lead to uni-coloured germinal centres."

The results of the sequencing were astounding: "According to common belief, there are on the order of three to five founder cells per germinal centre. We just showed that the number is closer to 100," says Meyer-Hermann. The brainbow experiments showed that the germinal centres do not become as uni-coloured as expected. While some centres turned uni-coloured in the course of the antibody selection process, there were others which consisted of different colours even after a long period of time.

This means that there is not one definite dominant antibody, but that many different antibodies coexist.
Perhaps it is not always of advantage to adapt perfectly to a pathogen. After all, the pathogens keep developing too. "The more specific the antibodies are, the more difficult it may be for them to respond to mutations in the pathogens," says Meyer-Hermann. "Accordingly, a certain degree of variability and flexibility could be crucial for keeping up with the constantly changing pathogens."

In the long term, these insights might help in the development of new vaccines, since antibodies are the fundamental basis of vaccines. "Once we know what affects the ratio of dominant-clone versus diverse germinal centres, we can specifically adapt the diversity of the induced antibodies to the mutation rate of the pathogen in the vaccination protocols we use," says Meyer-Hermann.

Weitere Informationen:

http://www.helmholtz-hzi.de/en/news_events/news/view/article/complete/flexibilit... - Press release

Susanne Thiele | Helmholtz-Zentrum für Infektionsforschung

Further reports about: B-cell B-cells Biomedical HZI Helmholtz-Zentrum pathogens

More articles from Life Sciences:

nachricht What happens in the cell nucleus after fertilization
06.12.2016 | Helmholtz Zentrum München - Deutsches Forschungszentrum für Gesundheit und Umwelt

nachricht Researchers uncover protein-based “cancer signature”
05.12.2016 | Universität Basel

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Significantly more productivity in USP lasers

In recent years, lasers with ultrashort pulses (USP) down to the femtosecond range have become established on an industrial scale. They could advance some applications with the much-lauded “cold ablation” – if that meant they would then achieve more throughput. A new generation of process engineering that will address this issue in particular will be discussed at the “4th UKP Workshop – Ultrafast Laser Technology” in April 2017.

Even back in the 1990s, scientists were comparing materials processing with nanosecond, picosecond and femtosesecond pulses. The result was surprising:...

Im Focus: Shape matters when light meets atom

Mapping the interaction of a single atom with a single photon may inform design of quantum devices

Have you ever wondered how you see the world? Vision is about photons of light, which are packets of energy, interacting with the atoms or molecules in what...

Im Focus: Novel silicon etching technique crafts 3-D gradient refractive index micro-optics

A multi-institutional research collaboration has created a novel approach for fabricating three-dimensional micro-optics through the shape-defined formation of porous silicon (PSi), with broad impacts in integrated optoelectronics, imaging, and photovoltaics.

Working with colleagues at Stanford and The Dow Chemical Company, researchers at the University of Illinois at Urbana-Champaign fabricated 3-D birefringent...

Im Focus: Quantum Particles Form Droplets

In experiments with magnetic atoms conducted at extremely low temperatures, scientists have demonstrated a unique phase of matter: The atoms form a new type of quantum liquid or quantum droplet state. These so called quantum droplets may preserve their form in absence of external confinement because of quantum effects. The joint team of experimental physicists from Innsbruck and theoretical physicists from Hannover report on their findings in the journal Physical Review X.

“Our Quantum droplets are in the gas phase but they still drop like a rock,” explains experimental physicist Francesca Ferlaino when talking about the...

Im Focus: MADMAX: Max Planck Institute for Physics takes up axion research

The Max Planck Institute for Physics (MPP) is opening up a new research field. A workshop from November 21 - 22, 2016 will mark the start of activities for an innovative axion experiment. Axions are still only purely hypothetical particles. Their detection could solve two fundamental problems in particle physics: What dark matter consists of and why it has not yet been possible to directly observe a CP violation for the strong interaction.

The “MADMAX” project is the MPP’s commitment to axion research. Axions are so far only a theoretical prediction and are difficult to detect: on the one hand,...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

ICTM Conference 2017: Production technology for turbomachine manufacturing of the future

16.11.2016 | Event News

Innovation Day Laser Technology – Laser Additive Manufacturing

01.11.2016 | Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

 
Latest News

Simple processing technique could cut cost of organic PV and wearable electronics

06.12.2016 | Materials Sciences

3-D printed kidney phantoms aid nuclear medicine dosing calibration

06.12.2016 | Medical Engineering

Robot on demand: Mobile machining of aircraft components with high precision

06.12.2016 | Power and Electrical Engineering

VideoLinks
B2B-VideoLinks
More VideoLinks >>>