Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Flexibility, rather than perfection, helps in the fight against pathogens

19.02.2016

Flexibility may be a crucial advantage in the defence against pathogens

When a foreign substance invades a body, the body produces antibodies that recognise and fight the intruder by means of antibodies that bind to a specific portion of the intruder - the antigen. Memory cells are then formed in the course of the defence reaction.


Mesenteric lymph node of a Confetti mouse infected with Friend retrovirus. The clusters of colored cells are germinal centers showing different levels of color dominance

© Gabriel D. Victora

These cells make sure that the body can respond more quickly and more strongly to any recurring attack of the same pathogen. According to a study just published in "Science" by scientists of the Whitehead Institute for Biomedical Research, Cambridge, USA, and the Helmholtz Centre for Infection Research (HZI) in Braunschweig, Germany, the common notion, i.e. that the body produces antibodies with a perfectly fitting key-lock design for a specific antigen exclusively, is not true.

Antibodies are produced by a certain type of white blood cells called B-cells or B-leukocytes which patrol our lymph nodes in search of pathogens every day. When a B-cell binds to an antigen by means of its receptor, the B-cell either produces a reasonably well-fitting antibody directly or it gets involved in the formation of a germinal centre. Germinal centres are antibody training sites:

The B-cells proliferate in them, diversify their antibodies through mutation and optimise them through selection. "In the course of time, the affinity of the antibodies for the antigens increases. Basically, only the most effective antibodies persist. This evolutionary process is called affinity maturation," says Michael Meyer-Hermann, who is the director of the "System Immunology" department at the HZI.

Meyer-Hermann and his colleague, Gabriel Victora, from the Whitehead Institute for Biomedical Research aimed to test this theory in the scope of a project funded by the Human Frontiers Science Program in order to find out more about the process of affinity maturation. For this purpose, the researchers combined single-cell sequencing with brainbow experiments, a technique that is common in brain and developmental research. In this technique, mother cells are stained with random fluorescent proteins, which they then pass on to their daughter cells.

"This allows us to recognise exactly which lineage the cells have come from, and which founder cells dominate the germinal centre," says Meyer-Hermann. "According to what was known, we presumed that only a few cells established the germinal centre and that the strong selection pressure would lead to uni-coloured germinal centres."

The results of the sequencing were astounding: "According to common belief, there are on the order of three to five founder cells per germinal centre. We just showed that the number is closer to 100," says Meyer-Hermann. The brainbow experiments showed that the germinal centres do not become as uni-coloured as expected. While some centres turned uni-coloured in the course of the antibody selection process, there were others which consisted of different colours even after a long period of time.

This means that there is not one definite dominant antibody, but that many different antibodies coexist.
Perhaps it is not always of advantage to adapt perfectly to a pathogen. After all, the pathogens keep developing too. "The more specific the antibodies are, the more difficult it may be for them to respond to mutations in the pathogens," says Meyer-Hermann. "Accordingly, a certain degree of variability and flexibility could be crucial for keeping up with the constantly changing pathogens."

In the long term, these insights might help in the development of new vaccines, since antibodies are the fundamental basis of vaccines. "Once we know what affects the ratio of dominant-clone versus diverse germinal centres, we can specifically adapt the diversity of the induced antibodies to the mutation rate of the pathogen in the vaccination protocols we use," says Meyer-Hermann.

Weitere Informationen:

http://www.helmholtz-hzi.de/en/news_events/news/view/article/complete/flexibilit... - Press release

Susanne Thiele | Helmholtz-Zentrum für Infektionsforschung

Further reports about: B-cell B-cells Biomedical HZI Helmholtz-Zentrum pathogens

More articles from Life Sciences:

nachricht A Map of the Cell’s Power Station
18.08.2017 | Albert-Ludwigs-Universität Freiburg im Breisgau

nachricht On the way to developing a new active ingredient against chronic infections
18.08.2017 | Deutsches Zentrum für Infektionsforschung

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Fizzy soda water could be key to clean manufacture of flat wonder material: Graphene

Whether you call it effervescent, fizzy, or sparkling, carbonated water is making a comeback as a beverage. Aside from quenching thirst, researchers at the University of Illinois at Urbana-Champaign have discovered a new use for these "bubbly" concoctions that will have major impact on the manufacturer of the world's thinnest, flattest, and one most useful materials -- graphene.

As graphene's popularity grows as an advanced "wonder" material, the speed and quality at which it can be manufactured will be paramount. With that in mind,...

Im Focus: Exotic quantum states made from light: Physicists create optical “wells” for a super-photon

Physicists at the University of Bonn have managed to create optical hollows and more complex patterns into which the light of a Bose-Einstein condensate flows. The creation of such highly low-loss structures for light is a prerequisite for complex light circuits, such as for quantum information processing for a new generation of computers. The researchers are now presenting their results in the journal Nature Photonics.

Light particles (photons) occur as tiny, indivisible portions. Many thousands of these light portions can be merged to form a single super-photon if they are...

Im Focus: Circular RNA linked to brain function

For the first time, scientists have shown that circular RNA is linked to brain function. When a RNA molecule called Cdr1as was deleted from the genome of mice, the animals had problems filtering out unnecessary information – like patients suffering from neuropsychiatric disorders.

While hundreds of circular RNAs (circRNAs) are abundant in mammalian brains, one big question has remained unanswered: What are they actually good for? In the...

Im Focus: RAVAN CubeSat measures Earth's outgoing energy

An experimental small satellite has successfully collected and delivered data on a key measurement for predicting changes in Earth's climate.

The Radiometer Assessment using Vertically Aligned Nanotubes (RAVAN) CubeSat was launched into low-Earth orbit on Nov. 11, 2016, in order to test new...

Im Focus: Scientists shine new light on the “other high temperature superconductor”

A study led by scientists of the Max Planck Institute for the Structure and Dynamics of Matter (MPSD) at the Center for Free-Electron Laser Science in Hamburg presents evidence of the coexistence of superconductivity and “charge-density-waves” in compounds of the poorly-studied family of bismuthates. This observation opens up new perspectives for a deeper understanding of the phenomenon of high-temperature superconductivity, a topic which is at the core of condensed matter research since more than 30 years. The paper by Nicoletti et al has been published in the PNAS.

Since the beginning of the 20th century, superconductivity had been observed in some metals at temperatures only a few degrees above the absolute zero (minus...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Call for Papers – ICNFT 2018, 5th International Conference on New Forming Technology

16.08.2017 | Event News

Sustainability is the business model of tomorrow

04.08.2017 | Event News

Clash of Realities 2017: Registration now open. International Conference at TH Köln

26.07.2017 | Event News

 
Latest News

A Map of the Cell’s Power Station

18.08.2017 | Life Sciences

Engineering team images tiny quasicrystals as they form

18.08.2017 | Physics and Astronomy

Researchers printed graphene-like materials with inkjet

18.08.2017 | Materials Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>