Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Fishing impacts on the Great Barrier Reef

22.04.2015

New research shows that fishing is having a significant impact on the make-up of fish populations of the Great Barrier Reef.

It's long been known that environmental impacts such as climate change and pollution are amongst the drivers of change on the Great Barrier Reef.


Predatory fish are extremely important for maintaining a balanced ecosystem on the Great Barrier Reef.

Image: April Boaden

Now researchers from the ARC Centre of Excellence for Coral Reef Studies (Coral CoE) at James Cook University have found that removing predatory fish such as coral trout and snapper, through fishing, causes significant changes to the make-up of the reef's fish populations.

"A stable and healthy reef includes a high abundance and diversity of predatory fish and a relatively low number of herbivorous and small prey fish," says study lead author April Boaden, a PhD student at the Coral CoE.

"Predatory fish are extremely important for maintaining a balanced ecosystem on the reef, yet predators such as coral trout, snapper and emperor fish remain the main target for both recreational and commercial fishers," she says.

As part of the study, the researchers conducted extensive surveys of fish and their habitats at multiple sites across the Great Barrier Reef.

They compared fish communities in designated marine reserves (green zones), recreational fishing areas (yellow zones) and sites that allowed both commercial and recreational fishing (blue zones).

"We found that the fish communities on reefs differed greatly according to the level of fishing that they were subject to," Ms Boaden says.

"Predator numbers were severely depleted in heavily fished areas, while smaller prey fish such as damselfish, and herbivores such as parrotfish, had increased greatly in number having been released from predation."

The reduction in predator abundance through fishing altered the balance and structure of the coral reef ecosystem.

"Major disturbances such as cyclones, coral bleaching, climate change, Crown of Thorns Starfish and river run-off are thought to be the primary agents of change on the Great Barrier Reef," says study co-author, Professor Mike Kingsford from the Coral CoE.

"Despite this, we have demonstrated that great differences in the abundance of predatory reef fish, and of their prey, can be attributed to humans," Professor Kingsford says.

The findings support the continued and improved use of the existing marine networks on the Great Barrier Reef.

"The good news is that the data demonstrate that the current system of marine reserves on the Great Barrier Reef is effective in preserving predator numbers, and in doing so we can learn more about the processes affecting reefs in the face of multiple impacts," Professor Kingsford says.

"Fishing impacts are something that we can manage fairly easily compared to other threats such as climate change and run-off pollution, which are threatening the Great Barrier Reef," adds Ms Boaden.

###

Paper

Predators drive community structure in coral reef fish assemblages by A. E. Boaden and M.J. Kingsford is published in the journal Ecosphere.
http://www.esajournals.org/doi/full/10.1890/ES14-00292.1

Images

https://www.dropbox.com/sh/6jfuugnn02z5q5v/AADgemR9yrvPnxXXPzwMYsi-a?dl=0
(Images must carry photographer credits as listed in Dropbox.)

Contacts

April Boaden, Coral CoE, +61 (0) 458 565 194, april.boaden@my.jcu.edu.au

Professor Michael Kingsford, Coral CoE and School of Marine and Tropical Biology, James Cook University, michael.kingsford@jcu.edu.au

Eleanor Gregory, Coral Coe Media, + 61 (0) 428 785 895, eleanor.gregory@jcu.edu.au

Media Contact

Eleanor Gregory
eleanor.gregory@jcu.edu.au
61-042-878-5895

 @CoralCoE

http://www.coralcoe.org.au/ 

Eleanor Gregory | EurekAlert!

More articles from Life Sciences:

nachricht Transport of molecular motors into cilia
28.03.2017 | Aarhus University

nachricht Asian dust providing key nutrients for California's giant sequoias
28.03.2017 | University of California - Riverside

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: A Challenging European Research Project to Develop New Tiny Microscopes

The Institute of Semiconductor Technology and the Institute of Physical and Theoretical Chemistry, both members of the Laboratory for Emerging Nanometrology (LENA), at Technische Universität Braunschweig are partners in a new European research project entitled ChipScope, which aims to develop a completely new and extremely small optical microscope capable of observing the interior of living cells in real time. A consortium of 7 partners from 5 countries will tackle this issue with very ambitious objectives during a four-year research program.

To demonstrate the usefulness of this new scientific tool, at the end of the project the developed chip-sized microscope will be used to observe in real-time...

Im Focus: Giant Magnetic Fields in the Universe

Astronomers from Bonn and Tautenburg in Thuringia (Germany) used the 100-m radio telescope at Effelsberg to observe several galaxy clusters. At the edges of these large accumulations of dark matter, stellar systems (galaxies), hot gas, and charged particles, they found magnetic fields that are exceptionally ordered over distances of many million light years. This makes them the most extended magnetic fields in the universe known so far.

The results will be published on March 22 in the journal „Astronomy & Astrophysics“.

Galaxy clusters are the largest gravitationally bound structures in the universe. With a typical extent of about 10 million light years, i.e. 100 times the...

Im Focus: Tracing down linear ubiquitination

Researchers at the Goethe University Frankfurt, together with partners from the University of Tübingen in Germany and Queen Mary University as well as Francis Crick Institute from London (UK) have developed a novel technology to decipher the secret ubiquitin code.

Ubiquitin is a small protein that can be linked to other cellular proteins, thereby controlling and modulating their functions. The attachment occurs in many...

Im Focus: Perovskite edges can be tuned for optoelectronic performance

Layered 2D material improves efficiency for solar cells and LEDs

In the eternal search for next generation high-efficiency solar cells and LEDs, scientists at Los Alamos National Laboratory and their partners are creating...

Im Focus: Polymer-coated silicon nanosheets as alternative to graphene: A perfect team for nanoelectronics

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are less stable. Now researchers at the Technical University of Munich (TUM) have, for the first time ever, produced a composite material combining silicon nanosheets and a polymer that is both UV-resistant and easy to process. This brings the scientists a significant step closer to industrial applications like flexible displays and photosensors.

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

International Land Use Symposium ILUS 2017: Call for Abstracts and Registration open

20.03.2017 | Event News

CONNECT 2017: International congress on connective tissue

14.03.2017 | Event News

ICTM Conference: Turbine Construction between Big Data and Additive Manufacturing

07.03.2017 | Event News

 
Latest News

Researchers shoot for success with simulations of laser pulse-material interactions

29.03.2017 | Materials Sciences

Igniting a solar flare in the corona with lower-atmosphere kindling

29.03.2017 | Physics and Astronomy

As sea level rises, much of Honolulu and Waikiki vulnerable to groundwater inundation

29.03.2017 | Earth Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>