Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Fish on the run

29.06.2015

Researchers describe how an approaching object triggers a flight reaction in the fish brain

Humans and animals instinctively evade rapidly approaching objects. By doing so, they avoid collisions or escape attacking predators. For this to happen, the brain must calculate the direction and speed of a stimulus in the visual system and initiate an appropriate evasive reaction.


The zebrafish tectum recognizes an approaching object as a threat. This brain area is innervated by axons from the eye (stained blue).

© Max Planck Institute of Neurobiology / Temizer

How the brain achieves this is largely unclear. Scientists from the Max Planck Institute of Neurobiology in Martinsried have now shown in zebrafish larvae what is interpreted as an approaching foe and which area of the brain recognizes an object as a threat and initiates a flight reaction.

Duck! In most cases, this warning is not necessary when we see an object approaching on collision course. Whether in a fly, fish, mouse or human, such situations generally trigger a stereotypical evasive reaction. In this way, potential predators or injury can be avoided.

“Because this behaviour is so similar across the entire animal kingdom, there is probably a hardwired programme for it in the brain,” says Incinur Temizer, summarizing the essence of her doctoral dissertation. In Herwig Baier’s Department at the Max Planck Institute of Neurobiology, she is studying, based on this example, how the brain converts sensory impressions into behavioural responses.

Incinur Temizer and her colleague Julia Semmelhack have now shown that zebrafish larvae measuring just a few millimetres in length flee from a two-dimensional representation of an object moving towards them. To pinpoint the location of the responsible circuit in the brain, the scientists first determined what exactly triggers the flight reflex.

In a series of experiments, they showed the fish a range of objects that differed in size, brightness and speed. The results showed that the flight reflex is most reliably triggered by a dark disc that "looms", meaning that it gradually increases in size.

The researchers then used optical methods to measure brain activity in response to this “key stimulus”. This is possible, as the tiny fish larvae are completely transparent. Thanks to a genetic modification, the brain areas that are active fluoresce under a microscope. In this way, the scientists were gradually able to narrow down the precise area of the brain that recognizes an approaching enemy and triggers a flight reflex.

The image of a looming object on the retina activates highly specific ganglion cells, which then relay the information to an area in the fish’s brain known as the tectum. The tectum assigns objects to a location in visual space and coordinates movement towards or away from such objects.

“We were able to show, for the first time, that neurons in the retina recognize an approaching object and trigger an evasive reaction through links to the tectum,” says Julia Semmelhack, summarizing the findings of the recently published study. That the tectum is really critical became clear when the researchers cut off the input of these retinal ganglion cells: such fish larvae were not entirely blind but no longer responded to approaching objects.

Contact

Dr. Stefanie Merker

Max Planck Institute of Neurobiology, Martinsried
Phone: +49 89 8578-3514

Email: merker@neuro.mpg.de

Prof. Dr. Herwig Baier
Max Planck Institute of Neurobiology, Martinsried
Phone: +49 89 8578-3200

Fax: +49 89 8578-3208

Email: hbaier@neuro.mpg.de


Original publication
Incinur Temizer, Joseph Donovan, Herwig Baier, Julia Semmelhack

A visual pathway for looming-evoked escape in larval zebrafish

Current Biology, 25 June 2015

Dr. Stefanie Merker | Max Planck Institute of Neurobiology, Martinsried

Further reports about: Fish Max Planck Institute Neurobiology Zebrafish fish larvae ganglion cells larvae stimulus

More articles from Life Sciences:

nachricht Repairing damaged hearts with self-healing heart cells
22.08.2017 | National University Health System

nachricht Biochemical 'fingerprints' reveal diabetes progression
22.08.2017 | Umea University

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Fizzy soda water could be key to clean manufacture of flat wonder material: Graphene

Whether you call it effervescent, fizzy, or sparkling, carbonated water is making a comeback as a beverage. Aside from quenching thirst, researchers at the University of Illinois at Urbana-Champaign have discovered a new use for these "bubbly" concoctions that will have major impact on the manufacturer of the world's thinnest, flattest, and one most useful materials -- graphene.

As graphene's popularity grows as an advanced "wonder" material, the speed and quality at which it can be manufactured will be paramount. With that in mind,...

Im Focus: Exotic quantum states made from light: Physicists create optical “wells” for a super-photon

Physicists at the University of Bonn have managed to create optical hollows and more complex patterns into which the light of a Bose-Einstein condensate flows. The creation of such highly low-loss structures for light is a prerequisite for complex light circuits, such as for quantum information processing for a new generation of computers. The researchers are now presenting their results in the journal Nature Photonics.

Light particles (photons) occur as tiny, indivisible portions. Many thousands of these light portions can be merged to form a single super-photon if they are...

Im Focus: Circular RNA linked to brain function

For the first time, scientists have shown that circular RNA is linked to brain function. When a RNA molecule called Cdr1as was deleted from the genome of mice, the animals had problems filtering out unnecessary information – like patients suffering from neuropsychiatric disorders.

While hundreds of circular RNAs (circRNAs) are abundant in mammalian brains, one big question has remained unanswered: What are they actually good for? In the...

Im Focus: RAVAN CubeSat measures Earth's outgoing energy

An experimental small satellite has successfully collected and delivered data on a key measurement for predicting changes in Earth's climate.

The Radiometer Assessment using Vertically Aligned Nanotubes (RAVAN) CubeSat was launched into low-Earth orbit on Nov. 11, 2016, in order to test new...

Im Focus: Scientists shine new light on the “other high temperature superconductor”

A study led by scientists of the Max Planck Institute for the Structure and Dynamics of Matter (MPSD) at the Center for Free-Electron Laser Science in Hamburg presents evidence of the coexistence of superconductivity and “charge-density-waves” in compounds of the poorly-studied family of bismuthates. This observation opens up new perspectives for a deeper understanding of the phenomenon of high-temperature superconductivity, a topic which is at the core of condensed matter research since more than 30 years. The paper by Nicoletti et al has been published in the PNAS.

Since the beginning of the 20th century, superconductivity had been observed in some metals at temperatures only a few degrees above the absolute zero (minus...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Call for Papers – ICNFT 2018, 5th International Conference on New Forming Technology

16.08.2017 | Event News

Sustainability is the business model of tomorrow

04.08.2017 | Event News

Clash of Realities 2017: Registration now open. International Conference at TH Köln

26.07.2017 | Event News

 
Latest News

Cholesterol-lowering drugs may fight infectious disease

22.08.2017 | Health and Medicine

Meter-sized single-crystal graphene growth becomes possible

22.08.2017 | Materials Sciences

Repairing damaged hearts with self-healing heart cells

22.08.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>