Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Fish oil helps transform fat cells from storage to burning

17.12.2015

Kyoto University shows how fish oil can improve fat metabolism in mice

Researchers have found that fish oil transforms fat-storage cells into fat-burning cells, which may reduce weight gain in middle age.


Kyoto University researchers have found that fish oil transforms fat-storage cells into fat-burning cells, which may reduce weight gain in middle age. Fish oil activates receptors in the digestive tract, fires the sympathetic nervous system, and induces storage cells to metabolize fat.

Credit: Eiri Ono/Kyoto University

The team explains in Scientific Reports that fish oil activates receptors in the digestive tract, fires the sympathetic nervous system, and induces storage cells to metabolize fat.

Fat tissues don't all store fat. So-called "white" cells store fat in order to maintain energy supply, while "brown" cells metabolize fat to maintain a stable body temperature. Brown cells are abundant in babies but decrease in number with maturity into adulthood.

A third type of fat cell -- "beige" cells -- have recently been found in humans and mice, and have shown to function much like brown cells. Beige cells also reduce in number as people approach middle age; without these metabolizing cells, fat continues accumulating for decades without ever being used.

The scientists investigated whether the number of these beige cells could be increased by taking in certain types of foods.

"We knew from previous research that fish oil has tremendous health benefits, including the prevention of fat accumulation," says senior author Teruo Kawada. "We tested whether fish oil and an increase in beige cells could be related."

The team fed a group of mice fatty food, and other groups fatty food with fish oil additives. The mice that ate food with fish oil, they found, gained 5-10% less weight and 15-25% less fat compared to those that did not consume the oil.

They also found that beige cells formed from white fat cells when the sympathetic nervous system was activated, meaning that certain fat-storage cells acquired the ability to metabolize.

"People have long said that food from Japan and the Mediterranean contribute to longevity, but why these cuisines are beneficial was up for debate," adds Kawada. "Now we have better insight into why that may be."

###

The paper "Fish oil intake induces UCP1 upregulation in brown and white adipose tissue via the sympathetic nervous system" will appear 17 December 2015 in Scientific Reports, with doi: 10.1038/srep18013

See also: http://kyoto-u.ac.jp/en/research/research_results/2015/151218_1.html/

Kyoto University is one of Japan and Asia's premier research institutions, founded in 1897 and responsible for producing numerous Nobel laureates and winners of other prestigious international prizes. A broad curriculum across the arts and sciences at both undergraduate and graduate levels is complemented by numerous research centers, as well as facilities and offices around Japan and the world. For more information please see: http://www.kyoto-u.ac.jp/en

Anna Ikarashi | EurekAlert!

More articles from Life Sciences:

nachricht A novel socio-ecological approach helps identifying suitable wolf habitats
17.02.2017 | Universität Zürich

nachricht New, ultra-flexible probes form reliable, scar-free integration with the brain
16.02.2017 | University of Texas at Austin

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Breakthrough with a chain of gold atoms

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

Im Focus: DNA repair: a new letter in the cell alphabet

Results reveal how discoveries may be hidden in scientific “blind spots”

Cells need to repair damaged DNA in our genes to prevent the development of cancer and other diseases. Our cells therefore activate and send “repair-proteins”...

Im Focus: Dresdner scientists print tomorrow’s world

The Fraunhofer IWS Dresden and Technische Universität Dresden inaugurated their jointly operated Center for Additive Manufacturing Dresden (AMCD) with a festive ceremony on February 7, 2017. Scientists from various disciplines perform research on materials, additive manufacturing processes and innovative technologies, which build up components in a layer by layer process. This technology opens up new horizons for component design and combinations of functions. For example during fabrication, electrical conductors and sensors are already able to be additively manufactured into components. They provide information about stress conditions of a product during operation.

The 3D-printing technology, or additive manufacturing as it is often called, has long made the step out of scientific research laboratories into industrial...

Im Focus: Mimicking nature's cellular architectures via 3-D printing

Research offers new level of control over the structure of 3-D printed materials

Nature does amazing things with limited design materials. Grass, for example, can support its own weight, resist strong wind loads, and recover after being...

Im Focus: Three Magnetic States for Each Hole

Nanometer-scale magnetic perforated grids could create new possibilities for computing. Together with international colleagues, scientists from the Helmholtz Zentrum Dresden-Rossendorf (HZDR) have shown how a cobalt grid can be reliably programmed at room temperature. In addition they discovered that for every hole ("antidot") three magnetic states can be configured. The results have been published in the journal "Scientific Reports".

Physicist Dr. Rantej Bali from the HZDR, together with scientists from Singapore and Australia, designed a special grid structure in a thin layer of cobalt in...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Booth and panel discussion – The Lindau Nobel Laureate Meetings at the AAAS 2017 Annual Meeting

13.02.2017 | Event News

Complex Loading versus Hidden Reserves

10.02.2017 | Event News

International Conference on Crystal Growth in Freiburg

09.02.2017 | Event News

 
Latest News

Biocompatible 3-D tracking system has potential to improve robot-assisted surgery

17.02.2017 | Medical Engineering

Real-time MRI analysis powered by supercomputers

17.02.2017 | Medical Engineering

Antibiotic effective against drug-resistant bacteria in pediatric skin infections

17.02.2017 | Health and Medicine

VideoLinks
B2B-VideoLinks
More VideoLinks >>>