Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Fish fins can sense touch

11.02.2016

New study finds pectoral fins feel touch through a surprisingly similar biological mechanism to mammals

The human fingertip is a finely tuned sensory machine, and even slight touches convey a great deal of information about our physical environment. It turns out, some fish use their pectoral fins in pretty much the same way. And do so through a surprisingly similar biological mechanism to mammals -- humans included.


High-speed video of the pictus catfish. Pectoral fins are held at a constant angle to the body throughout the swimming motion, allowing researchers to isolate and study neurons involved in touch sensation.

Credit: University of Chicago

In a study published in the Proceedings of the Royal Society B on Feb. 10, 2016 University of Chicago scientists have shown for the first time that pectoral fins in at least one species of fish possess neurons and cells that are exquisitely sensitive to touch. The discovery not only sheds light on the evolutionary biology of touch, it might also someday inspire new advances in the design of underwater robotics.

"It was a surprise to us that, similar to mammalian skin, fish fins are able to sense light pressure and subtle motion," said study author Adam Hardy, graduate student in the Department of Organismal Biology and Anatomy. "This information seems to be conveyed by a type of cell important for touch in mammals, which suggests that the underlying sensory morphology may be evolutionarily conserved."

... more about:
»Biology »catfish »neurons »pectoral fins

Located just behind the gills, pectoral fins are a pair of distinctive appendages that correspond to forelimbs in four-legged animals. Usually involved in propulsion or balance during swimming, pectoral fins have evolved dramatic functions in certain species. They famously allow flying fish to fly and mudskippers to crawl, for example. Numerous studies have explored the biomechanics, evolution and development of these fins, but little is known about what role they play as a sensory mechanism.

So Hardy, with graduate mentor Melina Hale, PhD, William Rainey Harper Professor of Organismal Biology and Anatomy, asked a simple question: can fish feel with their fins?

There is evidence that fish possess the sense of proprioception, or awareness of where their fins are relative to their bodies (much like how we can tell where our arms are even with our eyes closed). Previous studies have identified fin neurons that send signals containing information about bending, movement and position back to the brain. But touch is distinct from proprioception, and as fins are almost always in motion, teasing apart the two senses in an experimental setting is difficult.

Hardy and Hale approached this challenge by focusing on the pictus catfish, a small, bottom-dwelling species native to the muddy waters of the Amazon river. Aside from a hardened, serrated spine used for defense, the pectoral fins of these fish are fairly typical -- several bony rays connected by a soft membrane. However, pictus catfish don't appear to use their pectoral fins for locomotion, which the team confirmed through high-speed camera analyses.

Without conflicting signals from fin movement and positioning, the researchers were able to isolate and study neural activity in response to touch. They applied a variety of different stimuli with the flat end of a pin and a brush to the pectoral fin, and measured the activity of neurons that are responsible for sending information back to the brain.

The team discovered that neurons not only responded when contact was made, they carried information about the degree of pressure and the motion of the brush as well. An analysis of the cellular structures of the fin revealed the presence of cells that closely resemble Merkel cells, which are associated with nerve endings in the skin of mammals and are essential for touch.

"Like us, fish are able to feel the environment around them with their fins. Touch sensation may allow fish to live in dim environments, using touch to navigate when vision is limited," Hale said. "It raises a lot of exciting questions on how sensory cells shape the brain's perception of environmental features, and may provide insight into the evolution of sensation in vertebrates."

Intriguingly, this discovery could also have applications for underwater robotic design, especially in low-light environments.

"Understanding how membranous fins in fish are used to sense touch helps us identify what features are important for the design of underwater sensory membranes," Hale said. "For example, you can envision fish-inspired sensory membranes that can be used to scan surfaces in underwater environments where light may be obscured."

"In addition, animals use mechanical feedback to help control their limb movements," she adds. "Instrumenting underwater robots with touch sensors may help to improve their performance, particularly when navigating through complex environments."

The team are now studying touch sensitivity in the fins of other species of fish, such as flounders, as well as investigating the precise mechanisms for how fin neurons encode information about touch.

"One of big questions were trying to answer is whether this applies to all fish," Hardy said. "We predicted that touch sensitive fins would be very useful for bottom-dwelling fish, but you can imagine its utility in nocturnal or deep-sea environments as well."

###

The study, "Touch sensation by pectoral fins of the catfish Pimelodus pictus," was supported by the Office of Naval Research and the National Science Foundation. Additional authors include Bailey Steinworth.

Kevin Jiang | EurekAlert!

Further reports about: Biology catfish neurons pectoral fins

More articles from Life Sciences:

nachricht A Map of the Cell’s Power Station
18.08.2017 | Albert-Ludwigs-Universität Freiburg im Breisgau

nachricht On the way to developing a new active ingredient against chronic infections
21.08.2017 | Deutsches Zentrum für Infektionsforschung

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Fizzy soda water could be key to clean manufacture of flat wonder material: Graphene

Whether you call it effervescent, fizzy, or sparkling, carbonated water is making a comeback as a beverage. Aside from quenching thirst, researchers at the University of Illinois at Urbana-Champaign have discovered a new use for these "bubbly" concoctions that will have major impact on the manufacturer of the world's thinnest, flattest, and one most useful materials -- graphene.

As graphene's popularity grows as an advanced "wonder" material, the speed and quality at which it can be manufactured will be paramount. With that in mind,...

Im Focus: Exotic quantum states made from light: Physicists create optical “wells” for a super-photon

Physicists at the University of Bonn have managed to create optical hollows and more complex patterns into which the light of a Bose-Einstein condensate flows. The creation of such highly low-loss structures for light is a prerequisite for complex light circuits, such as for quantum information processing for a new generation of computers. The researchers are now presenting their results in the journal Nature Photonics.

Light particles (photons) occur as tiny, indivisible portions. Many thousands of these light portions can be merged to form a single super-photon if they are...

Im Focus: Circular RNA linked to brain function

For the first time, scientists have shown that circular RNA is linked to brain function. When a RNA molecule called Cdr1as was deleted from the genome of mice, the animals had problems filtering out unnecessary information – like patients suffering from neuropsychiatric disorders.

While hundreds of circular RNAs (circRNAs) are abundant in mammalian brains, one big question has remained unanswered: What are they actually good for? In the...

Im Focus: RAVAN CubeSat measures Earth's outgoing energy

An experimental small satellite has successfully collected and delivered data on a key measurement for predicting changes in Earth's climate.

The Radiometer Assessment using Vertically Aligned Nanotubes (RAVAN) CubeSat was launched into low-Earth orbit on Nov. 11, 2016, in order to test new...

Im Focus: Scientists shine new light on the “other high temperature superconductor”

A study led by scientists of the Max Planck Institute for the Structure and Dynamics of Matter (MPSD) at the Center for Free-Electron Laser Science in Hamburg presents evidence of the coexistence of superconductivity and “charge-density-waves” in compounds of the poorly-studied family of bismuthates. This observation opens up new perspectives for a deeper understanding of the phenomenon of high-temperature superconductivity, a topic which is at the core of condensed matter research since more than 30 years. The paper by Nicoletti et al has been published in the PNAS.

Since the beginning of the 20th century, superconductivity had been observed in some metals at temperatures only a few degrees above the absolute zero (minus...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Call for Papers – ICNFT 2018, 5th International Conference on New Forming Technology

16.08.2017 | Event News

Sustainability is the business model of tomorrow

04.08.2017 | Event News

Clash of Realities 2017: Registration now open. International Conference at TH Köln

26.07.2017 | Event News

 
Latest News

Nagoya physicists resolve long-standing mystery of structure-less transition

21.08.2017 | Materials Sciences

Chronic stress induces fatal organ dysfunctions via a new neural circuit

21.08.2017 | Health and Medicine

Scientists from the MSU studied new liquid-crystalline photochrom

21.08.2017 | Materials Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>