Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Fish fins can sense touch

11.02.2016

New study finds pectoral fins feel touch through a surprisingly similar biological mechanism to mammals

The human fingertip is a finely tuned sensory machine, and even slight touches convey a great deal of information about our physical environment. It turns out, some fish use their pectoral fins in pretty much the same way. And do so through a surprisingly similar biological mechanism to mammals -- humans included.


High-speed video of the pictus catfish. Pectoral fins are held at a constant angle to the body throughout the swimming motion, allowing researchers to isolate and study neurons involved in touch sensation.

Credit: University of Chicago

In a study published in the Proceedings of the Royal Society B on Feb. 10, 2016 University of Chicago scientists have shown for the first time that pectoral fins in at least one species of fish possess neurons and cells that are exquisitely sensitive to touch. The discovery not only sheds light on the evolutionary biology of touch, it might also someday inspire new advances in the design of underwater robotics.

"It was a surprise to us that, similar to mammalian skin, fish fins are able to sense light pressure and subtle motion," said study author Adam Hardy, graduate student in the Department of Organismal Biology and Anatomy. "This information seems to be conveyed by a type of cell important for touch in mammals, which suggests that the underlying sensory morphology may be evolutionarily conserved."

... more about:
»Biology »catfish »neurons »pectoral fins

Located just behind the gills, pectoral fins are a pair of distinctive appendages that correspond to forelimbs in four-legged animals. Usually involved in propulsion or balance during swimming, pectoral fins have evolved dramatic functions in certain species. They famously allow flying fish to fly and mudskippers to crawl, for example. Numerous studies have explored the biomechanics, evolution and development of these fins, but little is known about what role they play as a sensory mechanism.

So Hardy, with graduate mentor Melina Hale, PhD, William Rainey Harper Professor of Organismal Biology and Anatomy, asked a simple question: can fish feel with their fins?

There is evidence that fish possess the sense of proprioception, or awareness of where their fins are relative to their bodies (much like how we can tell where our arms are even with our eyes closed). Previous studies have identified fin neurons that send signals containing information about bending, movement and position back to the brain. But touch is distinct from proprioception, and as fins are almost always in motion, teasing apart the two senses in an experimental setting is difficult.

Hardy and Hale approached this challenge by focusing on the pictus catfish, a small, bottom-dwelling species native to the muddy waters of the Amazon river. Aside from a hardened, serrated spine used for defense, the pectoral fins of these fish are fairly typical -- several bony rays connected by a soft membrane. However, pictus catfish don't appear to use their pectoral fins for locomotion, which the team confirmed through high-speed camera analyses.

Without conflicting signals from fin movement and positioning, the researchers were able to isolate and study neural activity in response to touch. They applied a variety of different stimuli with the flat end of a pin and a brush to the pectoral fin, and measured the activity of neurons that are responsible for sending information back to the brain.

The team discovered that neurons not only responded when contact was made, they carried information about the degree of pressure and the motion of the brush as well. An analysis of the cellular structures of the fin revealed the presence of cells that closely resemble Merkel cells, which are associated with nerve endings in the skin of mammals and are essential for touch.

"Like us, fish are able to feel the environment around them with their fins. Touch sensation may allow fish to live in dim environments, using touch to navigate when vision is limited," Hale said. "It raises a lot of exciting questions on how sensory cells shape the brain's perception of environmental features, and may provide insight into the evolution of sensation in vertebrates."

Intriguingly, this discovery could also have applications for underwater robotic design, especially in low-light environments.

"Understanding how membranous fins in fish are used to sense touch helps us identify what features are important for the design of underwater sensory membranes," Hale said. "For example, you can envision fish-inspired sensory membranes that can be used to scan surfaces in underwater environments where light may be obscured."

"In addition, animals use mechanical feedback to help control their limb movements," she adds. "Instrumenting underwater robots with touch sensors may help to improve their performance, particularly when navigating through complex environments."

The team are now studying touch sensitivity in the fins of other species of fish, such as flounders, as well as investigating the precise mechanisms for how fin neurons encode information about touch.

"One of big questions were trying to answer is whether this applies to all fish," Hardy said. "We predicted that touch sensitive fins would be very useful for bottom-dwelling fish, but you can imagine its utility in nocturnal or deep-sea environments as well."

###

The study, "Touch sensation by pectoral fins of the catfish Pimelodus pictus," was supported by the Office of Naval Research and the National Science Foundation. Additional authors include Bailey Steinworth.

Kevin Jiang | EurekAlert!

Further reports about: Biology catfish neurons pectoral fins

More articles from Life Sciences:

nachricht Link Discovered between Immune System, Brain Structure and Memory
26.04.2017 | Universität Basel

nachricht Researchers develop eco-friendly, 4-in-1 catalyst
25.04.2017 | Brown University

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Making lightweight construction suitable for series production

More and more automobile companies are focusing on body parts made of carbon fiber reinforced plastics (CFRP). However, manufacturing and repair costs must be further reduced in order to make CFRP more economical in use. Together with the Volkswagen AG and five other partners in the project HolQueSt 3D, the Laser Zentrum Hannover e.V. (LZH) has developed laser processes for the automatic trimming, drilling and repair of three-dimensional components.

Automated manufacturing processes are the basis for ultimately establishing the series production of CFRP components. In the project HolQueSt 3D, the LZH has...

Im Focus: Wonder material? Novel nanotube structure strengthens thin films for flexible electronics

Reflecting the structure of composites found in nature and the ancient world, researchers at the University of Illinois at Urbana-Champaign have synthesized thin carbon nanotube (CNT) textiles that exhibit both high electrical conductivity and a level of toughness that is about fifty times higher than copper films, currently used in electronics.

"The structural robustness of thin metal films has significant importance for the reliable operation of smart skin and flexible electronics including...

Im Focus: Deep inside Galaxy M87

The nearby, giant radio galaxy M87 hosts a supermassive black hole (BH) and is well-known for its bright jet dominating the spectrum over ten orders of magnitude in frequency. Due to its proximity, jet prominence, and the large black hole mass, M87 is the best laboratory for investigating the formation, acceleration, and collimation of relativistic jets. A research team led by Silke Britzen from the Max Planck Institute for Radio Astronomy in Bonn, Germany, has found strong indication for turbulent processes connecting the accretion disk and the jet of that galaxy providing insights into the longstanding problem of the origin of astrophysical jets.

Supermassive black holes form some of the most enigmatic phenomena in astrophysics. Their enormous energy output is supposed to be generated by the...

Im Focus: A Quantum Low Pass for Photons

Physicists in Garching observe novel quantum effect that limits the number of emitted photons.

The probability to find a certain number of photons inside a laser pulse usually corresponds to a classical distribution of independent events, the so-called...

Im Focus: Microprocessors based on a layer of just three atoms

Microprocessors based on atomically thin materials hold the promise of the evolution of traditional processors as well as new applications in the field of flexible electronics. Now, a TU Wien research team led by Thomas Müller has made a breakthrough in this field as part of an ongoing research project.

Two-dimensional materials, or 2D materials for short, are extremely versatile, although – or often more precisely because – they are made up of just one or a...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Expert meeting “Health Business Connect” will connect international medical technology companies

20.04.2017 | Event News

Wenn der Computer das Gehirn austrickst

18.04.2017 | Event News

7th International Conference on Crystalline Silicon Photovoltaics in Freiburg on April 3-5, 2017

03.04.2017 | Event News

 
Latest News

Scientist invents way to trigger artificial photosynthesis to clean air

26.04.2017 | Materials Sciences

Ammonium nitrogen input increases the synthesis of anticarcinogenic compounds in broccoli

26.04.2017 | Agricultural and Forestry Science

SwRI-led team discovers lull in Mars' giant impact history

26.04.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>