Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

First serotonin neurons made from human stem cells

16.12.2015

Su-Chun Zhang, a pioneer in developing neurons from stem cells at the University of Wisconsin-Madison, has created a specialized nerve cell that makes serotonin, a signaling chemical with a broad role in the brain.

Serotonin affects emotions, sleep, anxiety, depression, appetite, pulse and breathing. It also plays a role in serious psychiatric conditions like schizophrenia, bipolar disorder and depression.


Human serotonin-producing neurons, generated from induced pluripotent stem cells, created in the lab of Su-Chun Zhang in the Waisman Center at the University of Wisconsin-Madison. Blue indicates cell nuclei, red and green show typical markers for these neurons, which produce a neurotransmitter that affects large parts of the brain.

Credit: Jianfeng Lu and Su-Chun Zhang, University of Wisconsin-Madison

"Serotonin essentially modulates every aspect of brain function, including movement," Zhang says. The transmitter is made by a small number of neurons localized on one structure at the back of the brain. Serotonin exerts its influence because the neurons that make it project to almost every part of the brain.

The study, reported today in the journal Nature Biotechnology, began with two types of stem cells: one derived from embryos, the other from adult cells. Because serotonin neurons form before birth, the researchers had to recreate the chemical environment found in the developing brain in the uterus, Zhang says.

"That sounds reasonably simple, and we have made so many different types of neural cells. Here, we had to instruct the stem cells to develop into one specific fate, using a custom-designed sequence of molecules at exact concentrations. That's especially difficult if you consider that the conditions needed to make serotonin neurons are scarce, existing in one small location in the brain during development."

The cells showed the expected response to electrical stimulation and also produced serotonin.

Although other scientists have matured stem cells into something resembling serotonin neurons, the case is much more conclusive this time, says first author Jianfeng Lu, a scientist at UW-Madison's Waisman Center. "Previously, labs were producing a few percent of serotonin neurons from pluripotent stem cells, and that made it very difficult to study their cells. If you detect 10 neurons, and only two are serotonin neurons, it's impossible to detect serotonin release; that was the stone in the road."

Instead, those neurons were identified based on cellular markers, which is "not sufficient to say those are functional serotonin neurons," Lu says.

To confirm that the new cells act like serotonin neurons, "we showed that the neurons responded to some FDA-approved drugs that regulate depression and anxiety through the serotonin pathway," Zhang says.

While the previous attempts "followed what was learned from mouse studies," the current study used other growth factors, Zhang says. "It was not exactly trial and error; we have some rules to follow, but we had to refine it little by little to work out -- one chemical at a time -- the concentration and timing, and then check and recheck the results. That's why it took time."

Although cells derived from stem cells are commonly used to test drug toxicity, Zhang is aiming higher with the serotonin neurons. "We think these can help develop new, more effective drugs, especially related to the higher neural functions that are so difficult to model in mice and rats," he says. "Particularly because they are from humans, these cells may lead to benefits for patients with depression, bipolar disorder or anxiety. These are some of the most troublesome psychiatric conditions, and we really don't have great drugs for them now."

Because the neurons can be generated from induced pluripotent stem cells, which can be produced from a patient's skin cells, "these could be useful for finding treatments for psychiatric disorders like depression, where we often see quite variable responses to drugs," says Lu. "By identifying individual differences, this could be a step toward personalized medicine.

"I'm like Su-Chun. I don't want to just make a publication in a scientific journal. I want our work to affect human health, to improve the human condition."

###

David Tenenbaum, 608-265-8549, djtenenb@wisc.edu

The research was funded by the National Institutes of Health. A patent application on the technology for producing the neurons has been filed through the Wisconsin Alumni Research Foundation. The authors declared no competing financial interests.

Su-Chun Zhang | EurekAlert!

More articles from Life Sciences:

nachricht A novel socio-ecological approach helps identifying suitable wolf habitats
17.02.2017 | Universität Zürich

nachricht New, ultra-flexible probes form reliable, scar-free integration with the brain
16.02.2017 | University of Texas at Austin

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Breakthrough with a chain of gold atoms

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

Im Focus: DNA repair: a new letter in the cell alphabet

Results reveal how discoveries may be hidden in scientific “blind spots”

Cells need to repair damaged DNA in our genes to prevent the development of cancer and other diseases. Our cells therefore activate and send “repair-proteins”...

Im Focus: Dresdner scientists print tomorrow’s world

The Fraunhofer IWS Dresden and Technische Universität Dresden inaugurated their jointly operated Center for Additive Manufacturing Dresden (AMCD) with a festive ceremony on February 7, 2017. Scientists from various disciplines perform research on materials, additive manufacturing processes and innovative technologies, which build up components in a layer by layer process. This technology opens up new horizons for component design and combinations of functions. For example during fabrication, electrical conductors and sensors are already able to be additively manufactured into components. They provide information about stress conditions of a product during operation.

The 3D-printing technology, or additive manufacturing as it is often called, has long made the step out of scientific research laboratories into industrial...

Im Focus: Mimicking nature's cellular architectures via 3-D printing

Research offers new level of control over the structure of 3-D printed materials

Nature does amazing things with limited design materials. Grass, for example, can support its own weight, resist strong wind loads, and recover after being...

Im Focus: Three Magnetic States for Each Hole

Nanometer-scale magnetic perforated grids could create new possibilities for computing. Together with international colleagues, scientists from the Helmholtz Zentrum Dresden-Rossendorf (HZDR) have shown how a cobalt grid can be reliably programmed at room temperature. In addition they discovered that for every hole ("antidot") three magnetic states can be configured. The results have been published in the journal "Scientific Reports".

Physicist Dr. Rantej Bali from the HZDR, together with scientists from Singapore and Australia, designed a special grid structure in a thin layer of cobalt in...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Booth and panel discussion – The Lindau Nobel Laureate Meetings at the AAAS 2017 Annual Meeting

13.02.2017 | Event News

Complex Loading versus Hidden Reserves

10.02.2017 | Event News

International Conference on Crystal Growth in Freiburg

09.02.2017 | Event News

 
Latest News

Switched-on DNA

20.02.2017 | Materials Sciences

Second cause of hidden hearing loss identified

20.02.2017 | Health and Medicine

Prospect for more effective treatment of nerve pain

20.02.2017 | Health and Medicine

VideoLinks
B2B-VideoLinks
More VideoLinks >>>