Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

First it was cows – now it’s larvae!

14.03.2017

Chaoborus spp is a small fly species that is found all over the world (except in Antarctica). Scientists at the University of Geneva (UNIGE), Switzerland - in collaboration with Berlin’s Leibniz-Institute of Freshwater Ecology and Inland Fisheries (IGB), Potsdam University and Swansea University - have discovered that Chaoborus spp also uses the methane it finds in lakebeds to help it move around. The species releases methane into the surface water, increasing the likelihood that the gas will enter the atmosphere. The research, which has been published in Scientific Reports on the 14th of March 2017, demonstrates the negative role played by the larvae in global warming.

Chaoborus spp spends one to two years of its life cycle under water in a larval state, in lakes no deeper than 70 metres. Larvae spend the day in lakebed sediment and rise to the surface at night time to feed. They are equipped with air sacs that they can adjust to alter their depth in the water so as to migrate upwards and downwards.


The scientists put the larvae into different flasks containing mathane-rich and methane-poor water to observe what happens to the methane level in proportion to the amount of larvae.

IGB

Chaoborus spp can adjust its position in the water by inflating these air pockets to rise to the surface or, conversely, compress them to descend again. However, at a depth of 70 metres, it is impossible for the larva to inflate its vesicles due to the water pressure that is exerted on them.

So, what does it do? This is the question that the team examined, led by Professor Daniel McGinnis, from the F.-A. Forel Department in the Science Faculty at the University of Geneva, in collaboration with IGB in Berlin, Swansea University and Potsdam University.

«Methane is a gas that is not very soluble in water. We know that it is present in very large quantities in anoxic sediments (depleted of oxygen), and that it exceeds the solubility capacity in water and forms small bubbles. Therefore, we hypothesised that the Chaoborus spp larvae absorb excess gas bubbles in order to inflate their vesicles, in spite of the water pressure, and are thus able to travel back to the surface,» explains Professor McGinnis.

The scientists did indeed find that methane, since it prefers air to water, slides naturally into the larva’s gas sacs, enabling it to re-inflate them and effortlessly reach the surface. Thanks to this ingenious inflatable «lift» system, Chaoborus spp saves up to 80% of the energy it would spend if it had to swim to the surface. Consequently, the larvae require less food and can expand their habitat.

Chaoborus spp larvae: exacerbating the greenhouse gas effect

The scientists subsequently wanted to know what larvae do with the methane they store. «First we put the larvae in an flask containing water that was rich in methane; then we moved them into methane-poor water,” continues McGinnis. “After taking measurements, we observed that the methane level increased in proportion to the amount of larvae present. In other words, the larvae releases this gas into the water once they reach the surface.»

Fresh water is responsible for 20% of natural methane emissions, and methane absorbs 28 times more heat than CO2; it has a significant impact, in short, on the greenhouse gas effect. Under normal conditions, methane is isolated and stored in lake sediments. However, the Chaoborus spp larvae let the gas out of this zone and increase its chances of reaching the atmosphere. They are, therefore, partly responsible for global warming.

What can be done about the situation? «The Chaoborus spp larvae, whose density ranges from 2,000 to 130,000 individuals per square metre, are only found when water is of poor quality, i.e. when it contains too many nutrients,” adds Professor McGinnis. “So this means improving water quality and the way we monitor agriculture and treat waste water. The larvae also allow some pollutants to reach the surface since they bring particles of sediment up with them.

Chaoborus spp: an obstacle in studying lake sediment

Paleolimnology is the study of water through the ages. The discipline is based on analysing the various layers of sediment found in bodies of water, with the striae enabling scientists to investigate the different states of water over the centuries. Yet, this is only possible if sediment has been allowed to settle and solidify in lakebeds without being disturbed. But, once again, the Chaoborus spp larvae disrupt these analyses since they stir up the layers of sediment when hiding away during the daytime. Consequently, scientists no longer have access to reliable striae for analysis. Professor McGinnis concludes, “In summary, although it is fascinating to study the insect, the presence of Chaoborus spp is always a bad sign for the health of an ecosystem. At the same time, it gives us one more reason to safeguard good water quality in our lakes”.

Link to the study:

http://www.nature.com/articles/srep44478

Daniel F. McGinnis, Sabine Flury, Kam W. Tang & Hans-Peter Grossart (2017): Porewater methane transport within the gas vesicles of diurnally migrating Chaoborus spp.: An energetic advantage. Scientific Reports 7:44478, DOI: 10.1038/srep44478.

Contacts:

Professor Daniel McGinnis
University of Geneva (UNIGE)
Daniel.Mcginnis@unige.ch
+41 22 379 0792

Professor Hans-Peter Grossart
Leibniz-Institute of Freshwater Ecology and Inland Fisheries (IGB)
hgrossart@igb-berlin.de
+49 (0)33082 699 91

About IGB:

http://www.igb-berlin.de

Work at IGB combines basic research with preventive research as a basis for the sustainable management of freshwaters. In the process, IGB explores the structure and function of aquatic ecosystems under near-natural conditions and under the effect of multiple stressors. Its key research activities include the long-term development of lakes, rivers and wetlands under rapidly changing global, regional and local environmental conditions, the development of coupled ecological and socio-economic models, the renaturation of ecosystems, and the biodiversity of aquatic habitats. Work is conducted in close cooperation with universities and research institutions from the Berlin/Brandenburg region as well as worldwide. IGB is a member of the Forschungsverbund Berlin e.V, an association of eight research institutes of natural sciences, life sciences and environmental sciences in Berlin. The institutes are members of the Leibniz Association.

Angelina Tittmann | idw - Informationsdienst Wissenschaft

More articles from Life Sciences:

nachricht Cells communicate in a dynamic code
19.02.2018 | California Institute of Technology

nachricht Studying mitosis' structure to understand the inside of cancer cells
19.02.2018 | Biophysical Society

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: In best circles: First integrated circuit from self-assembled polymer

For the first time, a team of researchers at the Max-Planck Institute (MPI) for Polymer Research in Mainz, Germany, has succeeded in making an integrated circuit (IC) from just a monolayer of a semiconducting polymer via a bottom-up, self-assembly approach.

In the self-assembly process, the semiconducting polymer arranges itself into an ordered monolayer in a transistor. The transistors are binary switches used...

Im Focus: Demonstration of a single molecule piezoelectric effect

Breakthrough provides a new concept of the design of molecular motors, sensors and electricity generators at nanoscale

Researchers from the Institute of Organic Chemistry and Biochemistry of the CAS (IOCB Prague), Institute of Physics of the CAS (IP CAS) and Palacký University...

Im Focus: Hybrid optics bring color imaging using ultrathin metalenses into focus

For photographers and scientists, lenses are lifesavers. They reflect and refract light, making possible the imaging systems that drive discovery through the microscope and preserve history through cameras.

But today's glass-based lenses are bulky and resist miniaturization. Next-generation technologies, such as ultrathin cameras or tiny microscopes, require...

Im Focus: Stem cell divisions in the adult brain seen for the first time

Scientists from the University of Zurich have succeeded for the first time in tracking individual stem cells and their neuronal progeny over months within the intact adult brain. This study sheds light on how new neurons are produced throughout life.

The generation of new nerve cells was once thought to taper off at the end of embryonic development. However, recent research has shown that the adult brain...

Im Focus: Interference as a new method for cooling quantum devices

Theoretical physicists propose to use negative interference to control heat flow in quantum devices. Study published in Physical Review Letters

Quantum computer parts are sensitive and need to be cooled to very low temperatures. Their tiny size makes them particularly susceptible to a temperature...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

2nd International Conference on High Temperature Shape Memory Alloys (HTSMAs)

15.02.2018 | Event News

Aachen DC Grid Summit 2018

13.02.2018 | Event News

How Global Climate Policy Can Learn from the Energy Transition

12.02.2018 | Event News

 
Latest News

Contacting the molecular world through graphene nanoribbons

19.02.2018 | Materials Sciences

When Proteins Shake Hands

19.02.2018 | Materials Sciences

Cells communicate in a dynamic code

19.02.2018 | Life Sciences

VideoLinks
Science & Research
Overview of more VideoLinks >>>