Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

First full-coverage underwater biotope map of the German Baltic Sea developed at IOW

18.09.2015

A research team from the Leibniz Institute for Baltic Sea Research Warnemünde (IOW) has now generated the first map that provides a detailed full-coverage description of the underwater biotopes of the German Baltic Sea and the German exclusive economic zone. Based on an internationally recognised classification system, it combines information about occurring species communities with information about abiotic habitat traits. The new map will facilitate the execution of national and international nature directives and there-fore is a valuable tool for implementing an environmentally friendly marine management.

With nine riparian states and about 85 million people living in its catchment area, the Baltic Sea is exposed to an intensive human influence. A key requirement to regulate such an intensive utilisation in a transparent way and without conflict is an internationally harmonised maritime spatial planning (MSP), which regulates the spatial and temporal distribution of human activities at sea.


Biotope map after to Schiele et. al. 2015 (detailed key: see original paper): About 20 % of the German Baltic Sea comprises biotopes well worth protecting such as Arctica islandica-dominated muds.

IOW

MSP also plays an essential role in achieving envi-ronmental objectives within binding EU regulations such as the Marine Strategy Framework Directive and Fauna-Flora-Habitat Directive. The effective implementation of these directives requires a sound knowledge of underwater habitats and the occurring species communities.

However, even though the Baltic Sea is one of the best studied regional seas in the world, to-date no large-scale information on the spatial distribution of underwater biotopes has been published for any of its riparian states. The main reason probably is the lack of areal data on underwater species communities as environmental investigations usually are based on point sampling or point observations.

For the German Baltic Sea and the adjacent German exclusive economic zone (EEZ) this knowledge gap has now been closed by a research team headed by IOW marine biologist Kerstin Schiele, who combined the analysis of extensive sample material with novel model-ing techniques to extrapolate point data for the entire study area.

Several thousand samples of benthic organisms were analysed, which had been taken over a 14-year-period (1999 -2013) at more than 2000 sites. The researchers determined the abundance and biomass of macrozoobenthos species – mainly mussels, snails, small crustaceans and marine worms – considered to be character species for certain biotopes.

In a second step, the scientists compiled extensive data sets on abiotic environmental parameters for the study area, such as water depth and temperature, current, salinity, oxygen consumption, and sediment grain-size, by combining data measured at the sampling sites with respective data published in other contexts.

The biological and environmental data were subject to several different computerized analyses a) to identify the occurring biotope types according to the internationally applied HELCOM HUB (H elsinki Com mission U nderwater B iotope and H abitat classification system) and b) to determine the spatial distribution of the biotopes in the study area.

“In total, we identified 68 different HELCOM HUB biotope types. About 20 % of the modeled area comprises Red-listed or other very rare biotopes well worth protecting,” Kerstin Schiele comments on the results. Due to the extensive data sets, the modeling of biotope occurrence and spatial distribution proved to be very successful: For 95 % of the study area the differentiation level necessary for identifying underwater biotopes according to HELCOM HUB was achieved.

“This points to a good applicability of the map as an effective tool for attaining more nature conservation in MSP. The boundaries between underwater biotopes are subject to continuous dynamic change. However, since the new biotope map integrates data from more than 10 years, it provides a good orientation for survey planning to evaluate protection needs of certain areas prior to human intervention,” the marine biologist explains. “Furthermore, the use of an internationally recognized classification system is a good basis for other Baltic Sea states to develop compatible biotope maps,” Schiele concludes.

Generated on behalf of Germany’s Federal Agency for Nature Conservation, the new biotope map was published recently together with the corresponding research in “Marine Pollution Bulletin”: Kerstin S. Schiele, Alexander Darr, Michael L. Zettler, René Friedland, Franz Tauber, Mario von Weber, Joachim Voss (2015) - Biotope map of the German Baltic Sea (doi: 10.1016/j.marpolbul.2015.05.038, http://www.ncbi.nlm.nih.gov/pubmed/26003386).

The study was conducted in cooperation with the State Agency for Environment, Nature Conservation and Geology Mecklenburg-Vorpommern as well as the State Agency for Agri-culture, Environment and Rural Areas Schleswig-Holstein.

*Scientific Contact:
Dr. Kerstin Schiele | IOW working group Ecology of benthic organisms
Phone: +49 (0)381 5197 423 | kerstin.schiele@io-warnemuende.de

*Press and Public Relations at IOW:
Dr. Kristin Beck | Phone: +49 (0)381 – 5197 135 | kristin.beck@io-warnemuende.de
Dr. Barbara Hentzsch | Phone: +49 (0)381 – 5197 102 | barbara.hentzsch@io-warnemuende.de

The IOW is a member of the Leibniz Association with currently 89 research institutes and scientific infrastructure facilities. The focus of the Leibniz Institutes ranges from natural, engineering and environmental sciences to economic, social and space sciences as well as to the humanities. The institutes are jointly financed at the state and national levels. The Leibniz Institutes employ a total of 18.100 people, of whom 9.200 are scientists. The total budget of the institutes is 1.64 billion Euros. (http://www.leibniz-association.eu)

Dr. Kristin Beck | idw - Informationsdienst Wissenschaft

More articles from Life Sciences:

nachricht New risk factors for anxiety disorders
24.02.2017 | Julius-Maximilians-Universität Würzburg

nachricht Stingless bees have their nests protected by soldiers
24.02.2017 | Johannes Gutenberg-Universität Mainz

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Breakthrough with a chain of gold atoms

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

Im Focus: DNA repair: a new letter in the cell alphabet

Results reveal how discoveries may be hidden in scientific “blind spots”

Cells need to repair damaged DNA in our genes to prevent the development of cancer and other diseases. Our cells therefore activate and send “repair-proteins”...

Im Focus: Dresdner scientists print tomorrow’s world

The Fraunhofer IWS Dresden and Technische Universität Dresden inaugurated their jointly operated Center for Additive Manufacturing Dresden (AMCD) with a festive ceremony on February 7, 2017. Scientists from various disciplines perform research on materials, additive manufacturing processes and innovative technologies, which build up components in a layer by layer process. This technology opens up new horizons for component design and combinations of functions. For example during fabrication, electrical conductors and sensors are already able to be additively manufactured into components. They provide information about stress conditions of a product during operation.

The 3D-printing technology, or additive manufacturing as it is often called, has long made the step out of scientific research laboratories into industrial...

Im Focus: Mimicking nature's cellular architectures via 3-D printing

Research offers new level of control over the structure of 3-D printed materials

Nature does amazing things with limited design materials. Grass, for example, can support its own weight, resist strong wind loads, and recover after being...

Im Focus: Three Magnetic States for Each Hole

Nanometer-scale magnetic perforated grids could create new possibilities for computing. Together with international colleagues, scientists from the Helmholtz Zentrum Dresden-Rossendorf (HZDR) have shown how a cobalt grid can be reliably programmed at room temperature. In addition they discovered that for every hole ("antidot") three magnetic states can be configured. The results have been published in the journal "Scientific Reports".

Physicist Dr. Rantej Bali from the HZDR, together with scientists from Singapore and Australia, designed a special grid structure in a thin layer of cobalt in...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Booth and panel discussion – The Lindau Nobel Laureate Meetings at the AAAS 2017 Annual Meeting

13.02.2017 | Event News

Complex Loading versus Hidden Reserves

10.02.2017 | Event News

International Conference on Crystal Growth in Freiburg

09.02.2017 | Event News

 
Latest News

Stingless bees have their nests protected by soldiers

24.02.2017 | Life Sciences

New risk factors for anxiety disorders

24.02.2017 | Life Sciences

MWC 2017: 5G Capital Berlin

24.02.2017 | Trade Fair News

VideoLinks
B2B-VideoLinks
More VideoLinks >>>