Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:


First full-coverage underwater biotope map of the German Baltic Sea developed at IOW


A research team from the Leibniz Institute for Baltic Sea Research Warnemünde (IOW) has now generated the first map that provides a detailed full-coverage description of the underwater biotopes of the German Baltic Sea and the German exclusive economic zone. Based on an internationally recognised classification system, it combines information about occurring species communities with information about abiotic habitat traits. The new map will facilitate the execution of national and international nature directives and there-fore is a valuable tool for implementing an environmentally friendly marine management.

With nine riparian states and about 85 million people living in its catchment area, the Baltic Sea is exposed to an intensive human influence. A key requirement to regulate such an intensive utilisation in a transparent way and without conflict is an internationally harmonised maritime spatial planning (MSP), which regulates the spatial and temporal distribution of human activities at sea.

Biotope map after to Schiele et. al. 2015 (detailed key: see original paper): About 20 % of the German Baltic Sea comprises biotopes well worth protecting such as Arctica islandica-dominated muds.


MSP also plays an essential role in achieving envi-ronmental objectives within binding EU regulations such as the Marine Strategy Framework Directive and Fauna-Flora-Habitat Directive. The effective implementation of these directives requires a sound knowledge of underwater habitats and the occurring species communities.

However, even though the Baltic Sea is one of the best studied regional seas in the world, to-date no large-scale information on the spatial distribution of underwater biotopes has been published for any of its riparian states. The main reason probably is the lack of areal data on underwater species communities as environmental investigations usually are based on point sampling or point observations.

For the German Baltic Sea and the adjacent German exclusive economic zone (EEZ) this knowledge gap has now been closed by a research team headed by IOW marine biologist Kerstin Schiele, who combined the analysis of extensive sample material with novel model-ing techniques to extrapolate point data for the entire study area.

Several thousand samples of benthic organisms were analysed, which had been taken over a 14-year-period (1999 -2013) at more than 2000 sites. The researchers determined the abundance and biomass of macrozoobenthos species – mainly mussels, snails, small crustaceans and marine worms – considered to be character species for certain biotopes.

In a second step, the scientists compiled extensive data sets on abiotic environmental parameters for the study area, such as water depth and temperature, current, salinity, oxygen consumption, and sediment grain-size, by combining data measured at the sampling sites with respective data published in other contexts.

The biological and environmental data were subject to several different computerized analyses a) to identify the occurring biotope types according to the internationally applied HELCOM HUB (H elsinki Com mission U nderwater B iotope and H abitat classification system) and b) to determine the spatial distribution of the biotopes in the study area.

“In total, we identified 68 different HELCOM HUB biotope types. About 20 % of the modeled area comprises Red-listed or other very rare biotopes well worth protecting,” Kerstin Schiele comments on the results. Due to the extensive data sets, the modeling of biotope occurrence and spatial distribution proved to be very successful: For 95 % of the study area the differentiation level necessary for identifying underwater biotopes according to HELCOM HUB was achieved.

“This points to a good applicability of the map as an effective tool for attaining more nature conservation in MSP. The boundaries between underwater biotopes are subject to continuous dynamic change. However, since the new biotope map integrates data from more than 10 years, it provides a good orientation for survey planning to evaluate protection needs of certain areas prior to human intervention,” the marine biologist explains. “Furthermore, the use of an internationally recognized classification system is a good basis for other Baltic Sea states to develop compatible biotope maps,” Schiele concludes.

Generated on behalf of Germany’s Federal Agency for Nature Conservation, the new biotope map was published recently together with the corresponding research in “Marine Pollution Bulletin”: Kerstin S. Schiele, Alexander Darr, Michael L. Zettler, René Friedland, Franz Tauber, Mario von Weber, Joachim Voss (2015) - Biotope map of the German Baltic Sea (doi: 10.1016/j.marpolbul.2015.05.038,

The study was conducted in cooperation with the State Agency for Environment, Nature Conservation and Geology Mecklenburg-Vorpommern as well as the State Agency for Agri-culture, Environment and Rural Areas Schleswig-Holstein.

*Scientific Contact:
Dr. Kerstin Schiele | IOW working group Ecology of benthic organisms
Phone: +49 (0)381 5197 423 |

*Press and Public Relations at IOW:
Dr. Kristin Beck | Phone: +49 (0)381 – 5197 135 |
Dr. Barbara Hentzsch | Phone: +49 (0)381 – 5197 102 |

The IOW is a member of the Leibniz Association with currently 89 research institutes and scientific infrastructure facilities. The focus of the Leibniz Institutes ranges from natural, engineering and environmental sciences to economic, social and space sciences as well as to the humanities. The institutes are jointly financed at the state and national levels. The Leibniz Institutes employ a total of 18.100 people, of whom 9.200 are scientists. The total budget of the institutes is 1.64 billion Euros. (

Dr. Kristin Beck | idw - Informationsdienst Wissenschaft

More articles from Life Sciences:

nachricht Novel mechanisms of action discovered for the skin cancer medication Imiquimod
21.10.2016 | Technische Universität München

nachricht Second research flight into zero gravity
21.10.2016 | Universität Zürich

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: New 3-D wiring technique brings scalable quantum computers closer to reality

Researchers from the Institute for Quantum Computing (IQC) at the University of Waterloo led the development of a new extensible wiring technique capable of controlling superconducting quantum bits, representing a significant step towards to the realization of a scalable quantum computer.

"The quantum socket is a wiring method that uses three-dimensional wires based on spring-loaded pins to address individual qubits," said Jeremy Béjanin, a PhD...

Im Focus: Scientists develop a semiconductor nanocomposite material that moves in response to light

In a paper in Scientific Reports, a research team at Worcester Polytechnic Institute describes a novel light-activated phenomenon that could become the basis for applications as diverse as microscopic robotic grippers and more efficient solar cells.

A research team at Worcester Polytechnic Institute (WPI) has developed a revolutionary, light-activated semiconductor nanocomposite material that can be used...

Im Focus: Diamonds aren't forever: Sandia, Harvard team create first quantum computer bridge

By forcefully embedding two silicon atoms in a diamond matrix, Sandia researchers have demonstrated for the first time on a single chip all the components needed to create a quantum bridge to link quantum computers together.

"People have already built small quantum computers," says Sandia researcher Ryan Camacho. "Maybe the first useful one won't be a single giant quantum computer...

Im Focus: New Products - Highlights of COMPAMED 2016

COMPAMED has become the leading international marketplace for suppliers of medical manufacturing. The trade fair, which takes place every November and is co-located to MEDICA in Dusseldorf, has been steadily growing over the past years and shows that medical technology remains a rapidly growing market.

In 2016, the joint pavilion by the IVAM Microtechnology Network, the Product Market “High-tech for Medical Devices”, will be located in Hall 8a again and will...

Im Focus: Ultra-thin ferroelectric material for next-generation electronics

'Ferroelectric' materials can switch between different states of electrical polarization in response to an external electric field. This flexibility means they show promise for many applications, for example in electronic devices and computer memory. Current ferroelectric materials are highly valued for their thermal and chemical stability and rapid electro-mechanical responses, but creating a material that is scalable down to the tiny sizes needed for technologies like silicon-based semiconductors (Si-based CMOS) has proven challenging.

Now, Hiroshi Funakubo and co-workers at the Tokyo Institute of Technology, in collaboration with researchers across Japan, have conducted experiments to...

All Focus news of the innovation-report >>>



Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

Agricultural Trade Developments and Potentials in Central Asia and the South Caucasus

14.10.2016 | Event News

World Health Summit – Day Three: A Call to Action

12.10.2016 | Event News

Latest News

Resolving the mystery of preeclampsia

21.10.2016 | Health and Medicine

Stanford researchers create new special-purpose computer that may someday save us billions

21.10.2016 | Information Technology

From ancient fossils to future cars

21.10.2016 | Materials Sciences

More VideoLinks >>>