Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

First detailed picture of a cancer-related cell enzyme in action on a chromosome unit

30.10.2014

A landmark study to be published in the October 30, 2014 print edition of the journal Nature provides new insight into the function of an enzyme related to the BRCA1 breast cancer protein. The study by a team at Penn State University is the first to produce a detailed working image of an enzyme in the Polycomb Repressive Complex 1 (PRC1) -- a group that regulates cell development and is associated with many types of cancer.

Enzymes like PRC1 turn on or turn off the activity of genes in a cell by manipulating individual chromosome units called nucleosomes. "The nucleosome is a key target of the enzymes that conduct genetic processes critical for life," said Song Tan, professor of biochemistry and molecular biology at Penn State University and the leader of the study's research team.


This image is the first detailed picture of the crystal structure of a gene-regulation enzyme while it is working on a nucleosome -- a fundamental component of the chromosomes that provide structure and organization for an organism's genes. Nucleosomes are key targets of the enzymes that conduct genetic processes critical for life. This image reveals the crystal structure of the PRC1 enzyme (yellow, blue and red) bound to the nucleosome (DNA in light blue, histone proteins in purple, light green, light yellow and pink) This image was obtained in the lab of Song Tan at Penn State University and was published in the print edition of the journal Nature on October 30, 2014. Credit: Song Tan lab, Penn State University


This image is the first detailed picture of the crystal structure of a gene-regulation enzyme while it is working on a nucleosome -- a fundamental component of the chromosomes that provide structure and organization for an organism's genes. Nucleosomes are key targets of the enzymes that conduct genetic processes critical for life. This image reveals the crystal structure of the PRC1 enzyme (yellow, blue and red) bound to the nucleosome (DNA in light blue, histone proteins in purple, light green, light yellow and pink) This image was obtained in the lab of Song Tan at Penn State University and was published in the print edition of the journal Nature on October 30, 2014.

Credit: Song Tan lab, Penn State University

The Penn State scientists obtained the first crystal structure of a gene regulation enzyme while it is working on a nucleosome. The image reveals previously unknown information about how the enzyme attaches to its nucleosome target.

Before this study, scientists had been unable to picture exactly how cancer-related enzymes in the PRC1 group interacted with a nucleosome to control gene activity. The study is also the first to determine the crystal structure of a multisubunit protein complex bound to a nucleosome, which itself is a complex assembly of DNA and 4 histone proteins.

The research is the culmination of over 12 years of research by the Tan laboratory to capture an image of this important class of enzymes bound to the nucleosome. His lab earlier had determined the first structure of another nucleosome-bound protein, RCC1.

"This is the second important structure from the Tan lab to date of a nucleosome in complex with a protein known to interact with and modify chromatin behavior, which in turn can influence human gene expression," said Peter Preusch, Ph.D., of the National Institutes of Health's National Institute of General Medical Sciences, which partially funded the research. "Along with Dr. Tan's previous work detailing a nucleosome bound to the key regulatory protein, RCC1, this new structure adds to our knowledge of how proteins can regulate the structure and function of our genetic material."

The research project was proposed and executed by team member Robert K. McGinty, a Damon Runyon postdoctoral fellow at Penn State. McGinty and Ryan C. Henrici, an undergraduate in the Penn State Schreyer Honors College, grew crystals of the PRC1 enzyme bound to the nucleosome.

The team then solved the three-dimensional structure of this large molecular assembly by X-ray crystallography. "We are excited about this crystal structure because it provides new paradigms for understanding how chromatin enzymes function," McGinty said.

The study performed in the Penn State Center for Eukaryotic Gene Regulation provides unexpected insight into the workings of the BRCA1 breast-cancer-associated tumor-suppressor protein. Like PRC1, BRCA1 is a chromatin enzyme that shares a similar activity on the nucleosome. Tan said, “Our study suggests that BRCA1 and PRC1 employ a similar mechanism to anchor to the nucleosome”. Tan and his team now are working to visualize how BRCA1 and other disease-related chromatin enzymes interact with the nucleosome.

This research was supported by grants from the National Institutes of Health, the Damon Runyon Cancer Research Foundation and Penn State University.

Contacts
Song Tan: sxt30@psu.edu, 814-865-3355
Barbara Kennedy (PIO): science@psu.edu, 814-863-4682

Barbara K. Kennedy | EurekAlert!
Further information:
http://science.psu.edu/news-and-events/2014-news/Tan10-2014-2

More articles from Life Sciences:

nachricht New application for acoustics helps estimate marine life populations
16.01.2018 | University of California - San Diego

nachricht Unexpected environmental source of methane discovered
16.01.2018 | University of Washington Health Sciences/UW Medicine

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Scientists decipher key principle behind reaction of metalloenzymes

So-called pre-distorted states accelerate photochemical reactions too

What enables electrons to be transferred swiftly, for example during photosynthesis? An interdisciplinary team of researchers has worked out the details of how...

Im Focus: The first precise measurement of a single molecule's effective charge

For the first time, scientists have precisely measured the effective electrical charge of a single molecule in solution. This fundamental insight of an SNSF Professor could also pave the way for future medical diagnostics.

Electrical charge is one of the key properties that allows molecules to interact. Life itself depends on this phenomenon: many biological processes involve...

Im Focus: Paradigm shift in Paris: Encouraging an holistic view of laser machining

At the JEC World Composite Show in Paris in March 2018, the Fraunhofer Institute for Laser Technology ILT will be focusing on the latest trends and innovations in laser machining of composites. Among other things, researchers at the booth shared with the Aachen Center for Integrative Lightweight Production (AZL) will demonstrate how lasers can be used for joining, structuring, cutting and drilling composite materials.

No other industry has attracted as much public attention to composite materials as the automotive industry, which along with the aerospace industry is a driver...

Im Focus: Room-temperature multiferroic thin films and their properties

Scientists at Tokyo Institute of Technology (Tokyo Tech) and Tohoku University have developed high-quality GFO epitaxial films and systematically investigated their ferroelectric and ferromagnetic properties. They also demonstrated the room-temperature magnetocapacitance effects of these GFO thin films.

Multiferroic materials show magnetically driven ferroelectricity. They are attracting increasing attention because of their fascinating properties such as...

Im Focus: A thermometer for the oceans

Measurement of noble gases in Antarctic ice cores

The oceans are the largest global heat reservoir. As a result of man-made global warming, the temperature in the global climate system increases; around 90% of...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

10th International Symposium: “Advanced Battery Power – Kraftwerk Batterie” Münster, 10-11 April 2018

08.01.2018 | Event News

See, understand and experience the work of the future

11.12.2017 | Event News

Innovative strategies to tackle parasitic worms

08.12.2017 | Event News

 
Latest News

Morbid Obesity: Gastric Bypass and Sleeve Gastrectomy Are Comparable

17.01.2018 | Health and Medicine

Researchers identify new way to unmask melanoma cells to the immune system

17.01.2018 | Health and Medicine

Genetic discovery may help better identify children at risk for type 1 diabetes

17.01.2018 | Health and Medicine

VideoLinks
B2B-VideoLinks
More VideoLinks >>>