Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

First Detailed Decoding of Complex Finger Millet Genome

05.09.2017

Finger millet has two important properties: The grain is rich in important minerals and resistant towards drought and heat. Thanks to a novel combination of state-of-the-art technologies, researchers at the University of Zurich were able to decode the large and extremely complex genome of finger millet in high quality for the first time. This represents a fundamental basis for improving food security in countries like India and parts of Africa.

For many poor farmers in India and Africa, finger millet is a major staple food. The crop species is not only a rich source of minerals like calcium, iron, magnesium and zinc, and it contains many vitamins and essential amino acids.


The sequenced finger millet genome is a central basis for improving food security in countries such as India.

Mathi Thumilan Balachadran

The plant is also characterized by its resistance to drought and heat. As it is very healthy and gluten-free, it is finding increased use as a food in industrial countries as well. Despite its importance, finger millet has been given very little scientific attention until now.

Large and complex genome due to fusion of two plant species

Finger millet arose through the hybridization of two different plant species. The plant is therefore polyploid, which means it has a four-fold set of chromosomes and almost twice as many genes as its original species.

The size and complexity of the genome are thought to have conferred the broad environmental tolerance of finger millet, while making genome research extremely difficult. For the first time, an international team of researchers from the University of Zurich has now managed to decode the complex genome of finger millet in great detail. It comprises about 2.6 million base pairs and has more than 62,300 genes – about twice as many as rice, for example.

New strategy for genome sequencing and mapping

A good 57,900 finger millet genes – over 90 percent – occur in more than two copies. As their DNA sequences are very similar, it was difficult to correctly allocate the numerous, decoded DNA sections within the entire genome. In cooperation with Ralph Schlapbach and Sirisha Aluri from the Functional Genomics Center at the University of Zurich and ETH Zurich, the team headed up by Kentaro Shimizu, professor at the UZH Department of Evolutionary Biology and Environmental Studies, has managed to overcome these difficulties.

For this purpose, the scientists combined a sophisticated bioinformatics strategy developed by Masaomi Hatakeyama that uses state-of-the-art sequencing methods with a new technology that can optically map the long, individual DNA molecules in the genome. “Our newly developed strategy will help sequence the genome of other polyploid cultivated plants that have not been able to be determined until now,” Shimizu says.

Improving the supply of nutrients and drought resistance

An interdisciplinary team of researchers from Zurich and Bangalore, India, worked together on this project. The work was supported by Indo-Swiss Collaboration in Biotechnology (ISCB), a bilateral research and development program financed by the Swiss and Indian governments, as well as by the Japan Science and Technology Agency. The objective is to improve food security and to develop the capacity of biotechnological research in India.

“The newly available genome data of finger millet opens up numerous possibilities for modern plant breeding,” Shimizu emphasizes. “On the one hand, to help people with mineral deficiencies in India and in industrialized countries and, on the other hand, to make important crop plants more resistant to drought and aridness.”

Literature:
Masaomi Hatakeyama, Sirisha Aluri, Mathi Thumilan Balachadran, Sajeevan Radha Sivarajan, Andrea Patrignani, Simon Grüter, Lucy Poveda, Rie Shimizu-Inatsugi, John Baeten, Kees-Jan Francoijs, Karaba N. Nataraja, Yellodu A. Nanja Reddy, Shamprasad Phadnis, Ramapura L. Ravikumar, Ralph Schlapbach, Sheshshayee M. Sreeman and Kentaro K. Shimizu. Multiple hybrid de novo genome assembly of finger millet, an orphan allotetraploid crop. DNA Research. 5 September 2017. DOI: 10.1093/dnares/dsx036

Contact:
Prof. Dr. Kentaro K. Shimizu
Department of Evolutionary Biology and Environmental Sciences
University of Zurich
Phone: +41 44 635 67 40
E-mail: kentaro.shimizu@ieu.uzh.ch

Weitere Informationen:

http://www.media.uzh.ch/en/Press-Releases/2017/Finger-millet-genome.html

Kurt Bodenmüller | Universität Zürich

More articles from Life Sciences:

nachricht New catalyst controls activation of a carbon-hydrogen bond
21.11.2017 | Emory Health Sciences

nachricht The main switch
21.11.2017 | Albert-Ludwigs-Universität Freiburg im Breisgau

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Nanoparticles help with malaria diagnosis – new rapid test in development

The WHO reports an estimated 429,000 malaria deaths each year. The disease mostly affects tropical and subtropical regions and in particular the African continent. The Fraunhofer Institute for Silicate Research ISC teamed up with the Fraunhofer Institute for Molecular Biology and Applied Ecology IME and the Institute of Tropical Medicine at the University of Tübingen for a new test method to detect malaria parasites in blood. The idea of the research project “NanoFRET” is to develop a highly sensitive and reliable rapid diagnostic test so that patient treatment can begin as early as possible.

Malaria is caused by parasites transmitted by mosquito bite. The most dangerous form of malaria is malaria tropica. Left untreated, it is fatal in most cases....

Im Focus: A “cosmic snake” reveals the structure of remote galaxies

The formation of stars in distant galaxies is still largely unexplored. For the first time, astron-omers at the University of Geneva have now been able to closely observe a star system six billion light-years away. In doing so, they are confirming earlier simulations made by the University of Zurich. One special effect is made possible by the multiple reflections of images that run through the cosmos like a snake.

Today, astronomers have a pretty accurate idea of how stars were formed in the recent cosmic past. But do these laws also apply to older galaxies? For around a...

Im Focus: Visual intelligence is not the same as IQ

Just because someone is smart and well-motivated doesn't mean he or she can learn the visual skills needed to excel at tasks like matching fingerprints, interpreting medical X-rays, keeping track of aircraft on radar displays or forensic face matching.

That is the implication of a new study which shows for the first time that there is a broad range of differences in people's visual ability and that these...

Im Focus: Novel Nano-CT device creates high-resolution 3D-X-rays of tiny velvet worm legs

Computer Tomography (CT) is a standard procedure in hospitals, but so far, the technology has not been suitable for imaging extremely small objects. In PNAS, a team from the Technical University of Munich (TUM) describes a Nano-CT device that creates three-dimensional x-ray images at resolutions up to 100 nanometers. The first test application: Together with colleagues from the University of Kassel and Helmholtz-Zentrum Geesthacht the researchers analyzed the locomotory system of a velvet worm.

During a CT analysis, the object under investigation is x-rayed and a detector measures the respective amount of radiation absorbed from various angles....

Im Focus: Researchers Develop Data Bus for Quantum Computer

The quantum world is fragile; error correction codes are needed to protect the information stored in a quantum object from the deteriorating effects of noise. Quantum physicists in Innsbruck have developed a protocol to pass quantum information between differently encoded building blocks of a future quantum computer, such as processors and memories. Scientists may use this protocol in the future to build a data bus for quantum computers. The researchers have published their work in the journal Nature Communications.

Future quantum computers will be able to solve problems where conventional computers fail today. We are still far away from any large-scale implementation,...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Ecology Across Borders: International conference brings together 1,500 ecologists

15.11.2017 | Event News

Road into laboratory: Users discuss biaxial fatigue-testing for car and truck wheel

15.11.2017 | Event News

#Berlin5GWeek: The right network for Industry 4.0

30.10.2017 | Event News

 
Latest News

Previous evidence of water on mars now identified as grainflows

21.11.2017 | Physics and Astronomy

NASA's James Webb Space Telescope completes final cryogenic testing

21.11.2017 | Physics and Astronomy

New catalyst controls activation of a carbon-hydrogen bond

21.11.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>