Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

First contracting human muscle grown in laboratory

14.01.2015

Researchers at Duke University report the first lab-grown, contracting human muscle, which could revolutionize drug discovery and personalized medicine

In a laboratory first, Duke researchers have grown human skeletal muscle that contracts and responds just like native tissue to external stimuli such as electrical pulses, biochemical signals and pharmaceuticals.


Duke engineers have engineered the first ever contracting lab-grown human muscles. This video shows forceful contraction of the human muscle bundles in response to electrical stimulation followed by a genetically encoded calcium sensor being used to visualize calcium flows during electrical stimulation.

Credit: Nenad Bursac, Duke University

The lab-grown tissue should soon allow researchers to test new drugs and study diseases in functioning human muscle outside of the human body.

The study was led by Nenad Bursac, associate professor of biomedical engineering at Duke University, and Lauran Madden, a postdoctoral researcher in Bursac's laboratory. It appears January 13 in the open-access journal eLife

"The beauty of this work is that it can serve as a test bed for clinical trials in a dish," said Bursac. "We are working to test drugs' efficacy and safety without jeopardizing a patient's health and also to reproduce the functional and biochemical signals of diseases -- especially rare ones and those that make taking muscle biopsies difficult."

Bursac and Madden started with a small sample of human cells that had already progressed beyond stem cells but hadn't yet become muscle tissue. They expanded these "myogenic precursors" by more than a 1000-fold, and then put them into a supportive, 3D scaffolding filled with a nourishing gel that allowed them to form aligned and functioning muscle fibers.

"We have a lot of experience making bioartifical muscles from animal cells in the laboratory, and it still took us a year of adjusting variables like cell and gel density and optimizing the culture matrix and media to make this work with human muscle cells," said Madden.

Madden subjected the new muscle to a barrage of tests to determine how closely it resembled native tissue inside a human body. She found that the muscles robustly contracted in response to electrical stimuli -- a first for human muscle grown in a laboratory. She also showed that the signaling pathways allowing nerves to activate the muscle were intact and functional.

To see if the muscle could be used as a proxy for medical tests, Bursac and Madden studied its response to a variety of drugs, including statins used to lower cholesterol and clenbuterol, a drug known to be used off-label as a performance enhancer for athletes.

The effects of the drugs matched those seen in human patients. The statins had a dose-dependent response, causing abnormal fat accumulation at high concentrations. Clenbuterol showed a narrow beneficial window for increased contraction. Both of these effects have been documented in humans. Clenbuterol does not harm muscle tissue in rodents at those doses, showing the lab-grown muscle was giving a truly human response.

"One of our goals is to use this method to provide personalized medicine to patients," said Bursac. "We can take a biopsy from each patient, grow many new muscles to use as test samples and experiment to see which drugs would work best for each person."

This goal may not be far away; Bursac is already working on a study with clinicians at Duke Medicine -- including Dwight Koeberl, associate professor of pediatrics -- to try to correlate efficacy of drugs in patients with the effects on lab-grown muscles. Bursac's group is also trying to grow contracting human muscles using induced pluripotent stem cells instead of biopsied cells.

"There are a some diseases, like Duchenne Muscular Dystrophy for example, that make taking muscle biopsies difficult," said Bursac. "If we could grow working, testable muscles from induced pluripotent stem cells, we could take one skin or blood sample and never have to bother the patient again."

Other investigators involved in this study include George Truskey, the R. Eugene and Susie E. Goodson Professor of Biomedical Engineering and senior associate dean for research for the Pratt School of Engineering, and William Krauss, professor of biomedical engineering, medicine and nursing at Duke University.

The research was supported by NIH Grants R01AR055226 and R01AR065873 from the National Institute of Arthritis and Musculoskeletal and Skin Disease and UH2TR000505 from the NIH Common Fund for the Microphysiological Systems Initiative.

###

Citation: "Bioengineered human myobundles mimic clinical responses of skeletal muscle to drugs," Lauran Madden, Mark Juhas, William E Kraus, George A Truskey, Nenad Bursac. eLife, Jan. 13, 2015. DOI: 10.7554/eLife.04885

Media Contact

Ken Kingery
ken.kingery@duke.edu
919-660-8414

 @DukeU

http://www.duke.edu 

Ken Kingery | EurekAlert!

More articles from Life Sciences:

nachricht Nerves control the body’s bacterial community
26.09.2017 | Christian-Albrechts-Universität zu Kiel

nachricht Ageless ears? Elderly barn owls do not become hard of hearing
26.09.2017 | Carl von Ossietzky-Universität Oldenburg

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: The fastest light-driven current source

Controlling electronic current is essential to modern electronics, as data and signals are transferred by streams of electrons which are controlled at high speed. Demands on transmission speeds are also increasing as technology develops. Scientists from the Chair of Laser Physics and the Chair of Applied Physics at Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU) have succeeded in switching on a current with a desired direction in graphene using a single laser pulse within a femtosecond ¬¬ – a femtosecond corresponds to the millionth part of a billionth of a second. This is more than a thousand times faster compared to the most efficient transistors today.

Graphene is up to the job

Im Focus: LaserTAB: More efficient and precise contacts thanks to human-robot collaboration

At the productronica trade fair in Munich this November, the Fraunhofer Institute for Laser Technology ILT will be presenting Laser-Based Tape-Automated Bonding, LaserTAB for short. The experts from Aachen will be demonstrating how new battery cells and power electronics can be micro-welded more efficiently and precisely than ever before thanks to new optics and robot support.

Fraunhofer ILT from Aachen relies on a clever combination of robotics and a laser scanner with new optics as well as process monitoring, which it has developed...

Im Focus: The pyrenoid is a carbon-fixing liquid droplet

Plants and algae use the enzyme Rubisco to fix carbon dioxide, removing it from the atmosphere and converting it into biomass. Algae have figured out a way to increase the efficiency of carbon fixation. They gather most of their Rubisco into a ball-shaped microcompartment called the pyrenoid, which they flood with a high local concentration of carbon dioxide. A team of scientists at Princeton University, the Carnegie Institution for Science, Stanford University and the Max Plank Institute of Biochemistry have unravelled the mysteries of how the pyrenoid is assembled. These insights can help to engineer crops that remove more carbon dioxide from the atmosphere while producing more food.

A warming planet

Im Focus: Highly precise wiring in the Cerebral Cortex

Our brains house extremely complex neuronal circuits, whose detailed structures are still largely unknown. This is especially true for the so-called cerebral cortex of mammals, where among other things vision, thoughts or spatial orientation are being computed. Here the rules by which nerve cells are connected to each other are only partly understood. A team of scientists around Moritz Helmstaedter at the Frankfiurt Max Planck Institute for Brain Research and Helene Schmidt (Humboldt University in Berlin) have now discovered a surprisingly precise nerve cell connectivity pattern in the part of the cerebral cortex that is responsible for orienting the individual animal or human in space.

The researchers report online in Nature (Schmidt et al., 2017. Axonal synapse sorting in medial entorhinal cortex, DOI: 10.1038/nature24005) that synapses in...

Im Focus: Tiny lasers from a gallery of whispers

New technique promises tunable laser devices

Whispering gallery mode (WGM) resonators are used to make tiny micro-lasers, sensors, switches, routers and other devices. These tiny structures rely on a...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

“Lasers in Composites Symposium” in Aachen – from Science to Application

19.09.2017 | Event News

I-ESA 2018 – Call for Papers

12.09.2017 | Event News

EMBO at Basel Life, a new conference on current and emerging life science research

06.09.2017 | Event News

 
Latest News

Nerves control the body’s bacterial community

26.09.2017 | Life Sciences

Four elements make 2-D optical platform

26.09.2017 | Physics and Astronomy

Goodbye, login. Hello, heart scan

26.09.2017 | Information Technology

VideoLinks
B2B-VideoLinks
More VideoLinks >>>