Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Fine Tuning in the Brain

01.07.2015

From a hodgepodge to well tuned networks - Freiburg researchers develop a computer model to explain how nerve cell connections form in the visual cortex.

When newborn babies open their eyes for the first time, they already possess nerve cells specialized in particular stimuli in the visual cortex of their brains – but these nerve cells are not systematically linked with each other. How do neural networks that react in a particular way to particular features of a stimulus develop over the course of time?


The connections between nerve cells that react to similar stimuli are strengthened as they gain visual experience (thick lines), while other connections are weakened (thin lines).

Copyright: Stefan Rotter / Bernstein Center Freiburg, 2015

In order to better understand the steps of this development and explain the complicated processes of reorganization they involve, an international team of researchers has now developed a computer model that precisely simulates the biological processes.

The results of the study by Prof. Dr. Stefan Rotter, Bernstein Center Freiburg (BCF) and Cluster of Excellence BrainLinks-BrainTools of the University of Freiburg, conducted in cooperation with Dr. Claudia Clopath from the Imperial College London, England, have now been published in the journals PLOS Computational Biology and PLOS ONE.

“Our model enabled us to achieve a meaningful combination of typical features of biological neural networks in animals and humans in a computer simulation for the first time ever,” reports the neuroscientist Dr. Sadra Sadeh from the BCF. “The networks harness the principle of feedback to make nerve cells in the visual system into efficient detectors of features.

In addition, they can precisely coordinate the points of contact between the cells – the synapses – in learning processes.” It is difficult to combine these two properties in computer models, because it can easily lead to an explosion of activity in the network – similar to an epileptic fit. To keep the activity in the network stable, the researchers integrated inhibitory synapses into the learning process, which control the excitation in the network.

Researchers can now use the computer model to simulate various developmental processes in the brain’s visual cortex. Among other things, it will allow them to determine how connections between the nerve cells change the first time they receive stimuli from both eyes after birth. Such processes play a role in early-childhood visual disorders like congenital strabismus (squinting). “In the long term, the model could even enable us to develop better strategies for treating such illnesses,” says Rotter.

But why do the neural networks change their structures in the course of visual experience if nerve cells are already specialized in particular stimuli at the moment the eyes first open? The team found an answer to this question in a parallel study.

“In a simulation directly comparing inexperienced and fully developed nerve cell networks, we were able to demonstrate that fully developed networks further strengthen components of a stimulus that carry more information by preferring connections of neurons with the same function,” explains Rotter. Therefore, while newborns do indeed have the capacity to process all stimuli when they first open their eyes, their perception is greatly improved through the fine tuning of the nerve cell connections.

The Bernstein Center Freiburg is part of the National Bernstein Network Computational Neuroscience in Germany. With this funding initiative, the German Federal Ministry of Education and Research (BMBF) has supported the new discipline of Computational Neuroscience since 2004 with over 180 million Euros. The network is named after the German physiologist Julius Bernstein (1835-1917).

Contact:
Prof. Dr. Stefan Rotter
University of Freiburg
Bernstein Center Freiburg
Hansastraße 9A
7904 Freiburg (Germany)
Tel: +49 (0)761-203 9316
Email: stefan.rotter@biologie.uni-freiburg.de

Original publications:

S. Sadeh, C. Clopath & S. Rotter (2015): Emergence of functional specificity in balanced networks with synaptic plasticity. PLOS Computational Biology 11(6): e1004307
doi:10.1371/journal.pcbi.1004307

S. Sadeh, C. Clopath & S. Rotter (2015): Processing of feature selectivity in cortical networks with specific connectivity. PLOS ONE 10(6): e0127547
doi:10.1371/journal.pone.0127547

Weitere Informationen:

https://www.bcf.uni-freiburg.de/people/details/rotter Website Stefan Rotter
https://www.bcf.uni-freiburg.de Bernstein Center Freiburg
http://www.uni-freiburg.de University of Freiburg
http://www.nncn.de National Bernstein Network Computational Neuroscience

Mareike Kardinal | idw - Informationsdienst Wissenschaft

More articles from Life Sciences:

nachricht Molecular evolution: How the building blocks of life may form in space
26.04.2018 | American Institute of Physics

nachricht Multifunctional bacterial microswimmer able to deliver cargo and destroy itself
26.04.2018 | Max-Planck-Institut für Intelligente Systeme

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Why we need erasable MRI scans

New technology could allow an MRI contrast agent to 'blink off,' helping doctors diagnose disease

Magnetic resonance imaging, or MRI, is a widely used medical tool for taking pictures of the insides of our body. One way to make MRI scans easier to read is...

Im Focus: BAM@Hannover Messe: innovative 3D printing method for space flight

At the Hannover Messe 2018, the Bundesanstalt für Materialforschung und-prüfung (BAM) will show how, in the future, astronauts could produce their own tools or spare parts in zero gravity using 3D printing. This will reduce, weight and transport costs for space missions. Visitors can experience the innovative additive manufacturing process live at the fair.

Powder-based additive manufacturing in zero gravity is the name of the project in which a component is produced by applying metallic powder layers and then...

Im Focus: Molecules Brilliantly Illuminated

Physicists at the Laboratory for Attosecond Physics, which is jointly run by Ludwig-Maximilians-Universität and the Max Planck Institute of Quantum Optics, have developed a high-power laser system that generates ultrashort pulses of light covering a large share of the mid-infrared spectrum. The researchers envisage a wide range of applications for the technology – in the early diagnosis of cancer, for instance.

Molecules are the building blocks of life. Like all other organisms, we are made of them. They control our biorhythm, and they can also reflect our state of...

Im Focus: Spider silk key to new bone-fixing composite

University of Connecticut researchers have created a biodegradable composite made of silk fibers that can be used to repair broken load-bearing bones without the complications sometimes presented by other materials.

Repairing major load-bearing bones such as those in the leg can be a long and uncomfortable process.

Im Focus: Writing and deleting magnets with lasers

Study published in the journal ACS Applied Materials & Interfaces is the outcome of an international effort that included teams from Dresden and Berlin in Germany, and the US.

Scientists at the Helmholtz-Zentrum Dresden-Rossendorf (HZDR) together with colleagues from the Helmholtz-Zentrum Berlin (HZB) and the University of Virginia...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

Invitation to the upcoming "Current Topics in Bioinformatics: Big Data in Genomics and Medicine"

13.04.2018 | Event News

Unique scope of UV LED technologies and applications presented in Berlin: ICULTA-2018

12.04.2018 | Event News

IWOLIA: A conference bringing together German Industrie 4.0 and French Industrie du Futur

09.04.2018 | Event News

 
Latest News

World's smallest optical implantable biodevice

26.04.2018 | Power and Electrical Engineering

Molecular evolution: How the building blocks of life may form in space

26.04.2018 | Life Sciences

First Li-Fi-product with technology from Fraunhofer HHI launched in Japan

26.04.2018 | Power and Electrical Engineering

VideoLinks
Science & Research
Overview of more VideoLinks >>>