Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

FIC Proteins Send Bacteria Into Hibernation

21.08.2015

Bacteria do not cease to amaze us with their survival strategies. A research team from the University of Basel's Biozentrum has now discovered how bacteria enter a sleep mode using a so-called FIC toxin. In the current issue of “Cell Reports”, the scientists describe the mechanism of action and also explain why their discovery provides new insights into the evolution of pathogens.

For many poisons there are antidotes which neutralize their toxic effect. Toxin-antitoxin systems in bacteria work in a similar manner: As long as a cell produces an antitoxin, thereby neutralizing a particular toxin, it grows normally. If the antitoxin is degraded, triggered for example by adverse environmental conditions, the toxin becomes effective and inhibits important cellular processes.


FIC toxins modify the spatial structure of the DNA (blue) of bacteria (red: cell membrane)

© University of Basel, Biozentrum

These systems act like a switch that interferes with bacterial growth and sends the bacteria into a state of dormancy in which they can be protected from the action of antibiotics. Prof. Christoph Dehio’s research group at the Biozentrum, University of Basel, has uncovered a new mechanism of action of toxins from the group of FIC proteins.

FIC toxin put bacteria into sleep mode

Toxin-antitoxin systems are ubiquitous in the bacterial world. The toxins usually inhibit protein synthesis or energy supply of the bacterium. Dehio’s team now first discovered such toxins among FIC proteins that can be found in all domains of life and demonstrated that they act by altering cellular DNA. The FIC toxins modify two target proteins, called topoisomerases, which give the bacterial DNA its characteristic twisted shape and monitor its spatial structure. The toxins completely shut down their activity.

“One can imagine as if FIC toxins pull the plug on topoisomerases”, explains Alexander Harms, first author and Fellowships for Excellence fellow at the Biozentrum. This rapidly leads to massive changes in the topology of cellular DNA, sending the bacteria into a kind of sleep state.

New insights into the evolution of pathogens

FIC proteins have a broad spectrum of molecular activities. Until now, research has mainly focused on FIC proteins which are injected as virulence factors by pathogenic bacteria into host cells. In their study, the scientists led by Dehio demonstrated for the first time a biological function of evolutionarily more ancestral FIC proteins, which still act within bacterial cells. This discovery could help to understand how pathogens and their tools arise in evolution.

Next, Dehio’s team aims to elucidate the evolutionary link between these original FIC toxins and the FIC proteins, which are injected as virulence factors into host cells by diverse pathogens.

Original source
Alexander Harms, Frédéric Valentin Stanger, Patrick Daniel Scheu, Imke Greet de Jong, Arnaud Goepfert, Timo Glatter, Kenn Gerdes, Tilman Schirmer & Christoph Dehio
Adenylylation of Gyrase and Topo IV by FicT Toxins Disrupts Bacterial DNA Topology
Cell Reports (2015), doi:

Further information
Prof. Dr. Christoph Dehio, University of Basel, Biozentrum, phone: +41 61 267 21 40, email: christoph.dehio@unibas.ch

Katrin Bühler | Universität Basel
Further information:
http://www.unibas.ch

More articles from Life Sciences:

nachricht Toward a 'smart' patch that automatically delivers insulin when needed
18.01.2017 | American Chemical Society

nachricht 127 at one blow...
18.01.2017 | Stiftung Zoologisches Forschungsmuseum Alexander Koenig, Leibniz-Institut für Biodiversität der Tiere

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: How gut bacteria can make us ill

HZI researchers decipher infection mechanisms of Yersinia and immune responses of the host

Yersiniae cause severe intestinal infections. Studies using Yersinia pseudotuberculosis as a model organism aim to elucidate the infection mechanisms of these...

Im Focus: Interfacial Superconductivity: Magnetic and superconducting order revealed simultaneously

Researchers from the University of Hamburg in Germany, in collaboration with colleagues from the University of Aarhus in Denmark, have synthesized a new superconducting material by growing a few layers of an antiferromagnetic transition-metal chalcogenide on a bismuth-based topological insulator, both being non-superconducting materials.

While superconductivity and magnetism are generally believed to be mutually exclusive, surprisingly, in this new material, superconducting correlations...

Im Focus: Studying fundamental particles in materials

Laser-driving of semimetals allows creating novel quasiparticle states within condensed matter systems and switching between different states on ultrafast time scales

Studying properties of fundamental particles in condensed matter systems is a promising approach to quantum field theory. Quasiparticles offer the opportunity...

Im Focus: Designing Architecture with Solar Building Envelopes

Among the general public, solar thermal energy is currently associated with dark blue, rectangular collectors on building roofs. Technologies are needed for aesthetically high quality architecture which offer the architect more room for manoeuvre when it comes to low- and plus-energy buildings. With the “ArKol” project, researchers at Fraunhofer ISE together with partners are currently developing two façade collectors for solar thermal energy generation, which permit a high degree of design flexibility: a strip collector for opaque façade sections and a solar thermal blind for transparent sections. The current state of the two developments will be presented at the BAU 2017 trade fair.

As part of the “ArKol – development of architecturally highly integrated façade collectors with heat pipes” project, Fraunhofer ISE together with its partners...

Im Focus: How to inflate a hardened concrete shell with a weight of 80 t

At TU Wien, an alternative for resource intensive formwork for the construction of concrete domes was developed. It is now used in a test dome for the Austrian Federal Railways Infrastructure (ÖBB Infrastruktur).

Concrete shells are efficient structures, but not very resource efficient. The formwork for the construction of concrete domes alone requires a high amount of...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

12V, 48V, high-voltage – trends in E/E automotive architecture

10.01.2017 | Event News

2nd Conference on Non-Textual Information on 10 and 11 May 2017 in Hannover

09.01.2017 | Event News

Nothing will happen without batteries making it happen!

05.01.2017 | Event News

 
Latest News

A big nano boost for solar cells

18.01.2017 | Power and Electrical Engineering

Glass's off-kilter harmonies

18.01.2017 | Materials Sciences

Toward a 'smart' patch that automatically delivers insulin when needed

18.01.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>