Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Fewer laboratory animals thanks to secondary nanobodies

22.12.2017

Antibodies are indispensable in biological research and medical diagnostics. However, their production is time-consuming, expensive, and requires the use of many animals. Scientists at the Max Planck Institute (MPI) for Biophysical Chemistry in Göttingen, Germany, have now developed so-called secondary nanobodies that can replace the most-used antibodies and may drastically reduce the number of animals in antibody production. This is possible because the secondary nanobodies can be produced in large scale by bacteria. Moreover, the secondary nanobodies outperform their traditional antibody counterparts in key cell-biological applications.

As a central part of our immune system, antibodies protect us humans and other vertebrates against pathogens. They are, however, also essential tools in medical diagnostics, therapy, and basic research – for example in fluorescence microscopy.


The researchers retrieved the nanobody construction plans from a small blood sample of two Alpacas and used them to program bacteria to produce the nanobodies without further animal involvement.

Irene-Böttcher-Gajewski / MPI for Biophysical Chemistry


Three-dimensional structure of a nanobody.

Tino Pleiner and Sergei Trakhanov / MPI for Biophysical Chemistry

When researchers want to study a certain protein within a cell, they can mark it selectively with antibodies directed against this protein. Once these so-called primary antibodies have bound their target, secondary antibodies are applied. These bind the primary antibodies, carry fluorescent dyes that light up under the microscope, and thus make the protein of interest visible.

The great variety of primary antibodies is traditionally produced in small mammals such as rabbits and mice: First, the animals are immunized with the purified protein – this is comparable to vaccinating humans. As a result, the animals’ immune system forms antibodies against the protein.

The antibodies are finally collected from the blood of the animals, and processed. As antibodies are used by thousands of labs worldwide and because most of their applications rely on secondary antibodies, the latter are in enormous demand. Therefore, the production of secondary antibodies necessitates not only many, but also large animals such as donkeys, goats, or sheep. This poses an ethical problem.

Secondary nanobodies can be produced in bacteria

Researchers at the MPI for Biophysical Chemistry in Göttingen now present a sustainable alternative that can replace secondary antibodies directed against primary ones from mice or rabbits. It relies on so-called nanobodies and may drastically reduce the number of animals used for antibody production. Nanobodies are fragments of special antibodies from camels and related species such as alpacas.

“We have developed secondary nanobodies that not only perform very well, but also, they can be produced microbiologically at any scale – just like beer in a fermenter,” explains Dirk Görlich, Director at the MPI for Biophysical Chemistry and head of the project.

“Secondary antibodies have to meet extremely stringent quality requirements and must detect only primary antibodies of a single species and no structures in the analyzed cells or medical samples. Thus, the problem was to obtain construction plans for truly perfect secondary nanobodies. We started with a vast number of variants that we extracted from a small amount of blood from two immunized alpacas. By so-called phage display, we then fished out the best variants and eventually used them to program bacteria for nanobody production,” elucidates Tino Pleiner, first author of the work now published in the Journal of Cell Biology.

Nanobodies were first described in 1993 by a Belgian pioneering group of scientists. Since then, researchers try to take advantage of them for their work in the lab. However, replacing secondary antibodies with nanobodies turned out to be not trivial at all. One reason is the nanobodies’ size: They are ten times smaller than normal antibodies. Therefore, they offer much less space for coupling fluorescent molecules and thus appear far dimmer in the microscope than conventional antibodies.

“Indeed, our first experiments with secondary nanobodies were rather disappointing and produced only dark and noisy images. However, we did not give up, and immunized the two alpacas again to stimulate their immune system to improve the initial nanobodies. Further evolution in the test tube, a special coupling strategy for the fluorescent dyes, and combining two or more compatible nanobodies did the rest,” Görlich tells about initial difficulties. By now, the nanobodies at least match conventional antibodies in terms of signal strength.

Improved resolution in light microscopy

Nanobodies have clear advantages over secondary antibodies. “Super-resolution fluorescence microscopy, for example, can optically resolve cellular structures in the range of a few nanometers. However, such images get blurred when primary and secondary antibodies are used that each measure 15 nanometers already. Using nanobodies with a size of just 3 nanometers indeed improves resolution,” Pleiner says.

“We have tested the secondary nanobodies in other applications besides microscopy, and the results are very promising,” Görlich emphasizes. Especially the new route of production in bacteria facilitates their modification and fusion to other reporter proteins, for instance enzymes. “We expect that in many applications our nanobodies will replace conventional secondary antibodies from donkeys, goats, or sheep.”

Original publication
Tino Pleiner, Mark Bates, Dirk Görlich: A toolbox of anti-mouse and rabbit IgG secondary nanobodies. Journal of Cell Biology, doi: 10.1083/jcb.201709115 (2017).

Contact
Prof. Dr. Dirk Görlich, Department of Cellular Logistics
Max Planck Institute for Biophysical Chemistry, Göttingen, Germany
Phone: +49 551 201-2400
E-mail: dgoerli@mpibpc.mpg.de

Dr. Frederik Köpper, Press and Public Relations
Max Planck Institute for Biophysical Chemistry, Göttingen, Germany
Phone: +49 551 201-1310
E-mail: fredrik.koepper@mpibpc.mpg.de

Weitere Informationen:

http://www.mpibpc.mpg.de/15856308/pr_1726 - original press release by the Max Planck Institute for Biophysical Chemistry
http://www.mpibpc.mpg.de/goerlich – Website of the Department of Cellular Logistics,
Max Planck Institute for Biophysical Chemistry, Göttingen, Germany

Dr. Carmen Rotte | Max-Planck-Institut für biophysikalische Chemie

More articles from Life Sciences:

nachricht Complete skin regeneration system of fish unraveled
24.04.2018 | Tokyo Institute of Technology

nachricht Scientists generate an atlas of the human genome using stem cells
24.04.2018 | The Hebrew University of Jerusalem

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: BAM@Hannover Messe: innovative 3D printing method for space flight

At the Hannover Messe 2018, the Bundesanstalt für Materialforschung und-prüfung (BAM) will show how, in the future, astronauts could produce their own tools or spare parts in zero gravity using 3D printing. This will reduce, weight and transport costs for space missions. Visitors can experience the innovative additive manufacturing process live at the fair.

Powder-based additive manufacturing in zero gravity is the name of the project in which a component is produced by applying metallic powder layers and then...

Im Focus: Molecules Brilliantly Illuminated

Physicists at the Laboratory for Attosecond Physics, which is jointly run by Ludwig-Maximilians-Universität and the Max Planck Institute of Quantum Optics, have developed a high-power laser system that generates ultrashort pulses of light covering a large share of the mid-infrared spectrum. The researchers envisage a wide range of applications for the technology – in the early diagnosis of cancer, for instance.

Molecules are the building blocks of life. Like all other organisms, we are made of them. They control our biorhythm, and they can also reflect our state of...

Im Focus: Spider silk key to new bone-fixing composite

University of Connecticut researchers have created a biodegradable composite made of silk fibers that can be used to repair broken load-bearing bones without the complications sometimes presented by other materials.

Repairing major load-bearing bones such as those in the leg can be a long and uncomfortable process.

Im Focus: Writing and deleting magnets with lasers

Study published in the journal ACS Applied Materials & Interfaces is the outcome of an international effort that included teams from Dresden and Berlin in Germany, and the US.

Scientists at the Helmholtz-Zentrum Dresden-Rossendorf (HZDR) together with colleagues from the Helmholtz-Zentrum Berlin (HZB) and the University of Virginia...

Im Focus: Gamma-ray flashes from plasma filaments

Novel highly efficient and brilliant gamma-ray source: Based on model calculations, physicists of the Max PIanck Institute for Nuclear Physics in Heidelberg propose a novel method for an efficient high-brilliance gamma-ray source. A giant collimated gamma-ray pulse is generated from the interaction of a dense ultra-relativistic electron beam with a thin solid conductor. Energetic gamma-rays are copiously produced as the electron beam splits into filaments while propagating across the conductor. The resulting gamma-ray energy and flux enable novel experiments in nuclear and fundamental physics.

The typical wavelength of light interacting with an object of the microcosm scales with the size of this object. For atoms, this ranges from visible light to...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

Invitation to the upcoming "Current Topics in Bioinformatics: Big Data in Genomics and Medicine"

13.04.2018 | Event News

Unique scope of UV LED technologies and applications presented in Berlin: ICULTA-2018

12.04.2018 | Event News

IWOLIA: A conference bringing together German Industrie 4.0 and French Industrie du Futur

09.04.2018 | Event News

 
Latest News

Quantum Technology for Advanced Imaging – QUILT

24.04.2018 | Information Technology

AWI researchers measure a record concentration of microplastic in arctic sea ice

24.04.2018 | Earth Sciences

Complete skin regeneration system of fish unraveled

24.04.2018 | Life Sciences

VideoLinks
Science & Research
Overview of more VideoLinks >>>