Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Female sticklebacks prime their offspring to cope with climate change

03.02.2015

Researchers at the Alfred Wegener Institute, Helmholtz Centre for Polar and Marine Research (AWI) have shown that three-spined sticklebacks in the North Sea pass on information concerning their living environment to their offspring, without genetic changes.

This could play an important role in the species´ ability to adapt to the effects of climate change, as AWI experts report in a recently published study in the journal Functional Ecology. Interestingly, this information transfer appears to be primarily the mother’s responsibility; in this study, the father’s temperature experiences were much less significant.


Three-spined sticklebacks (Gasterosteus aculeatus) raised during this study.

Photo: Tina Wagner, Alfred-Wegener-Institut

Climate change and the accompanying warming of the oceans are of key interest to researchers around the globe. Above all, they want to know: What will happen to marine life forms if the predicted changes become a reality? Will the various species be able to adapt to the rising water temperatures? In an effort to answer these questions, Dr Lisa Shama and Dr Mathias Wegner from the AWI-Sylt examined three-spined sticklebacks (Gasterosteus aculeatus) taken from the Wadden Sea off the coast of Sylt.

Over the course of several months of laboratory testing, they investigated whether the environmental experiences gathered by the parent fish alone can influence growth rates of their offspring. “Our focus wasn’t on genetic heredity, but instead on gene-independent information transfer. Because if these effects can be confirmed, they could play an important part in coping with the effects of rapid climate changes,” says biologist Mathias Wegner.

The point of departure for the study: The North Sea is growing warmer

For the North Sea, a habitat for marine populations of three-spined stickleback, climate models predict a rise in mean summer water temperatures of up to 4 degrees Celsius by the year 2100. In concrete terms, this will be a rise from 17 degrees to 21 degrees. “The three-spined stickleback is ideal for looking into this type of environmental change,” explains AWI biologist Lisa Shama, the first author of the study. “First of all, the species can be found throughout the Northern Hemisphere. Secondly, in the past it has had to adapt to a range of different environmental conditions. And thirdly, the fish are easy to breed and can be kept in the lab over several generations.”

In their experiments, Lisa Shama and Mathias Wegner kept female and male sticklebacks in either 17- or 21-degree-warm water. After two months, the fish were then mated within and between their acclimation temperatures. Sticklebacks use external fertilisation to reproduce: eggs and sperm only come into contact in the water. Using artificial fertilisation, multiple families of fertilised eggs (several parent couples) for each test group were produced, ensuring that each test group contained offspring of different parents, allowing the researchers to rule out genetic effects. “Knowing the genetic background of each offspring allows us to separate genetic effects from environmental effects”, explains Lisa Shama.

The offspring from each family were subsequently raised in 17- or 21-degree-warm water in order to separate the acute effects of their own environment from those passed on by their mothers and fathers environment. After 30 days, offspring that grew in water with the same temperature as their mothers displayed the best growth rates. “This finding told us that, when looking for the source of the information-sharing, we could concentrate on the females,” explains Mathias Wegner.

The researchers ultimately found the answer in the mitochondria, the “power plants” of cells, which are exclusively passed on to the next generation through the female’s eggs. Each egg cell contains thousands of mitochondria, equipping the embryo to immediately commence with its development. Working together with Dr Felix Mark and Dr Anneli Strobel from the AWI-Bremerhaven, the biologists were able to show that the mitochondria in young fish’s heart muscle consume less energy if they live in the same temperature of water as their mothers did.

With regard to the stickleback, this insight means: Offspring that live in the same conditions as their mothers showed optimised energy consumption in their heart muscle, i.e., an optimised metabolism. “Through her mitochondria, the mother shares information on the environment with her offspring,” summarises Lisa Shama. “This also produces a lasting effect, even if the offspring’s growth is primarily determined by their own environment,” adds Mathias Wegner.

This is confirmed by their observations: After 60 days all groups tested displayed better growth at 17 than at 21 degrees. However, the maternal effects could still be clearly seen in the more stressful environment (21 degrees), whereas the paternal effects had a negligible influence on offspring growth.

The conclusion: The information is stored in the mitochondria

Recapping the study’s findings, Mathias Wegner states, “Female sticklebacks pass on optimised mitochondria, which have adapted to the environmental conditions the mothers experienced, to their offspring. As a result the young fish receive information on their mothers’ environment and living conditions without any genetic changes. In this species, then, maternal effects play a decisive role in terms of the potential to adapt to changes in their habitat.”

This mechanism works particularly well in less favourable environments – which for sticklebacks means in warmer waters. According to Lisa Shama, “We can then conclude that the information-sharing mechanism – passing on the optimally acclimated mitochondria – represents a selective advantage and is likely the result of evolution.”


Notes for Editors:
The study was published under the following title in the December 2014 issue of the journal Functional Ecology:
Lisa N. S. Shama, Anneli Strobel, Felix C. Mark and K. Mathias Wegner (2014): Transgenerational plasticity in marine sticklebacks: maternal effects mediate impacts of a warming ocean, Functional Ecology, doi: 10.1111/1365-2435.12280 (http://onlinelibrary.wiley.com/doi/10.1111/1365-2435.12280/abstract)

Printable images can be found in the online version of this press release at http://www.awi.de/en/news/press_releases/.

Your academic contact partners at the Alfred Wegener Institute are:
• Dr Lisa Shama (tel: +49 (0)4651 9564-204; e-mail: Lisa.Shama(at)awi.de)
• Dr Mathias Wegner (tel: +49 (0) 4651 9564-205; e-mail: Mathias.Wegner(at)awi.de )
• Dr Felix Mark (tel: +49-(0)471 4831-1015; e-mail: Felix.Christopher.Mark(at)awi.de )

At the AWI’s press office, Ms Sina Löschke (tel: +49(0)471 4831-2008; e-mail: medien(at)awi.de) will be pleased to help you with any questions.

The Alfred Wegener Institute pursues research in the Arctic, Antarctic and the oceans of the middle and high latitudes. It coordinates polar research in Germany, while also providing essential infrastructure for the international scientific community, including the research icebreaker Polarstern and stations in the Arctic and Antarctic. The Alfred Wegener Institute is one of the 18 Research Centres of the Helmholtz Association, the largest scientific organisation in Germany.

Ralf Röchert | idw - Informationsdienst Wissenschaft

More articles from Life Sciences:

nachricht Transport of molecular motors into cilia
28.03.2017 | Aarhus University

nachricht Asian dust providing key nutrients for California's giant sequoias
28.03.2017 | University of California - Riverside

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: A Challenging European Research Project to Develop New Tiny Microscopes

The Institute of Semiconductor Technology and the Institute of Physical and Theoretical Chemistry, both members of the Laboratory for Emerging Nanometrology (LENA), at Technische Universität Braunschweig are partners in a new European research project entitled ChipScope, which aims to develop a completely new and extremely small optical microscope capable of observing the interior of living cells in real time. A consortium of 7 partners from 5 countries will tackle this issue with very ambitious objectives during a four-year research program.

To demonstrate the usefulness of this new scientific tool, at the end of the project the developed chip-sized microscope will be used to observe in real-time...

Im Focus: Giant Magnetic Fields in the Universe

Astronomers from Bonn and Tautenburg in Thuringia (Germany) used the 100-m radio telescope at Effelsberg to observe several galaxy clusters. At the edges of these large accumulations of dark matter, stellar systems (galaxies), hot gas, and charged particles, they found magnetic fields that are exceptionally ordered over distances of many million light years. This makes them the most extended magnetic fields in the universe known so far.

The results will be published on March 22 in the journal „Astronomy & Astrophysics“.

Galaxy clusters are the largest gravitationally bound structures in the universe. With a typical extent of about 10 million light years, i.e. 100 times the...

Im Focus: Tracing down linear ubiquitination

Researchers at the Goethe University Frankfurt, together with partners from the University of Tübingen in Germany and Queen Mary University as well as Francis Crick Institute from London (UK) have developed a novel technology to decipher the secret ubiquitin code.

Ubiquitin is a small protein that can be linked to other cellular proteins, thereby controlling and modulating their functions. The attachment occurs in many...

Im Focus: Perovskite edges can be tuned for optoelectronic performance

Layered 2D material improves efficiency for solar cells and LEDs

In the eternal search for next generation high-efficiency solar cells and LEDs, scientists at Los Alamos National Laboratory and their partners are creating...

Im Focus: Polymer-coated silicon nanosheets as alternative to graphene: A perfect team for nanoelectronics

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are less stable. Now researchers at the Technical University of Munich (TUM) have, for the first time ever, produced a composite material combining silicon nanosheets and a polymer that is both UV-resistant and easy to process. This brings the scientists a significant step closer to industrial applications like flexible displays and photosensors.

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

International Land Use Symposium ILUS 2017: Call for Abstracts and Registration open

20.03.2017 | Event News

CONNECT 2017: International congress on connective tissue

14.03.2017 | Event News

ICTM Conference: Turbine Construction between Big Data and Additive Manufacturing

07.03.2017 | Event News

 
Latest News

Transport of molecular motors into cilia

28.03.2017 | Life Sciences

A novel hybrid UAV that may change the way people operate drones

28.03.2017 | Information Technology

NASA spacecraft investigate clues in radiation belts

28.03.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>