Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Female frogs identify own offspring using inner GPS

15.03.2016

The ability to recognize our offspring and provide preferential care to our own young is nothing unusual for us. This is much more difficult for the poison frog Allobates femoralis, a highly polygamous species that produces rather indistinguishable tadpoles. According to a study conducted by the Messerli Research Institute of Vetmeduni Vienna, male and female frogs have different strategies for offspring discrimination. Females remember the exact location where they laid their eggs and exhibit preferential behaviour toward their own clutches. Males, on the other hand, assume that all offspring in their territory are their own. The study was published in the journal Animal Behaviour.

The brilliant-thighed poison frog Allobates femoralis is a ground-dwelling species inhabiting the tropical forests of South America. Males guard large territories in which females lay their eggs on fallen leaves. After three weeks of development, the tadpoles are generally transported on the backs of the males to the nearest body of water.


In the brilliant-thighed poisonfrog, the males transport the tadpoles to nearby water bodies.

Andrius Pašukonis

“Females only do so when the male is not in his territory at this time,” explains Eva Ringler from the Department of Comparative Cognitive Research at the Messerli Research Institute of Vetmeduni Vienna.

Own offspring should come first

... more about:
»GPs »Veterinary Medicine »Vetmeduni »frogs »tadpoles

Tadpole transport has its risks. The tadpoles will only survive if they are transported to a body of water at the right time. During transport, males leave their territory unguarded and risk territorial loss to rivals. Females, on the other hand, must discriminate their own clutch from a number of unrelated clutches. And on the way to the water, predators abound.

“Transport therefore only makes sense when the risk that is taken serves the survival of one’s offspring,” says Ringler. This assumes, however, that A. femoralis can identify its own offspring. “Especially interesting was whether there is a difference between male and female behaviour,” Ringler says.

Males play it safe

In a series of three terrarium trials, the researchers observed whether the frogs would transport only their own or also unrelated tadpoles. In the first test, males and females were presented only with an unrelated clutch. In the second test, an unrelated clutch was added to the terrarium of an individual that already had its own clutch. In the third test, the researchers exchanged the positions of the frog’s own clutch and a foreign clutch to see whether frogs recognize the clutch itself or remember the location of oviposition.

The tests showed that a majority of male frogs transported both their own as well as foreign clutches. They simply let all tadpoles present wiggle onto their back. The parental strategy of males apparently follows the rule of “my territory, my tadpoles”. Males therefore seem to forego the challenge of differentiation entirely.

Females remember the position of their clutch

The female strategy is quite different. They do not transport unrelated tadpoles. The females did not transport foreign tadpoles when they knew the position of their own clutch. But if the researchers switched the position of the female’s own clutch with another one, they only transported the unrelated clutch. This shows that, even weeks later, females remember the exact position where they laid their eggs. When they take over the tadpole transport, they choose the correct clutch based on its location.

Simple rule vs. inner GPS

The behaviour of the frogs in the study also indicated different cost/benefit calculations. Males, owing to their territorial behaviour, follow a simply rule. They assume that all clutches in their territory are theirs. Males therefore have a low risk of neglecting their own offspring. Their behaviour even offers unrelated tadpoles an increased chance of survival.

Females have a much higher risk of transporting a foreign clutch and neglecting their own. In their desire to transport only their own clutch, the female frogs rely on their inner GPS. “Further research is needed to clarify just how the females remember the exact location of oviposition in the dense rain forest,” Eva Ringler concludes.

Service:
The article “Sex-specific offspring discrimination reflects respective risks and costs of misdirected care in a poison frog” by Eva Ringler, Andrius Pašukonis, Max Ringler and Ludwig Huber was published in the journal Animal Behaviour. doi:10.1016/j.anbehav.2016.02.008
http://www.sciencedirect.com/science/article/pii/S0003347216000488

About the University of Veterinary Medicine, Vienna
The University of Veterinary Medicine, Vienna in Austria is one of the leading academic and research institutions in the field of Veterinary Sciences in Europe. About 1,300 employees and 2,300 students work on the campus in the north of Vienna which also houses five university clinics and various research sites. Outside of Vienna the university operates Teaching and Research Farms. http://www.vetmeduni.ac.at

Scientific Contact:
Eva Ringler
Messerli Research Institute (Unit of Comparative Cognition)
University of Veterinary Medicine, Vienna (Vetmeduni Vienna)
T +43 650 9780208
eva.ringler@vetmeduni.ac.at

Released by:
Georg Mair
Science Communication / Corporate Communications
University of Veterinary Medicine Vienna (Vetmeduni Vienna)
T +43 1 25077-1165
georg.mair@vetmeduni.ac.at

Weitere Informationen:

http://www.vetmeduni.ac.at/en/infoservice/presseinformation/presseinformationen-...

Mag.rer.nat Georg Mair | idw - Informationsdienst Wissenschaft

Further reports about: GPs Veterinary Medicine Vetmeduni frogs tadpoles

More articles from Life Sciences:

nachricht New photocatalyst speeds up the conversion of carbon dioxide into chemical resources
29.05.2017 | DGIST (Daegu Gyeongbuk Institute of Science and Technology)

nachricht Copper hydroxide nanoparticles provide protection against toxic oxygen radicals in cigarette smoke
29.05.2017 | Johannes Gutenberg-Universität Mainz

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Strathclyde-led research develops world's highest gain high-power laser amplifier

The world's highest gain high power laser amplifier - by many orders of magnitude - has been developed in research led at the University of Strathclyde.

The researchers demonstrated the feasibility of using plasma to amplify short laser pulses of picojoule-level energy up to 100 millijoules, which is a 'gain'...

Im Focus: Can the immune system be boosted against Staphylococcus aureus by delivery of messenger RNA?

Staphylococcus aureus is a feared pathogen (MRSA, multi-resistant S. aureus) due to frequent resistances against many antibiotics, especially in hospital infections. Researchers at the Paul-Ehrlich-Institut have identified immunological processes that prevent a successful immune response directed against the pathogenic agent. The delivery of bacterial proteins with RNA adjuvant or messenger RNA (mRNA) into immune cells allows the re-direction of the immune response towards an active defense against S. aureus. This could be of significant importance for the development of an effective vaccine. PLOS Pathogens has published these research results online on 25 May 2017.

Staphylococcus aureus (S. aureus) is a bacterium that colonizes by far more than half of the skin and the mucosa of adults, usually without causing infections....

Im Focus: A quantum walk of photons

Physicists from the University of Würzburg are capable of generating identical looking single light particles at the push of a button. Two new studies now demonstrate the potential this method holds.

The quantum computer has fuelled the imagination of scientists for decades: It is based on fundamentally different phenomena than a conventional computer....

Im Focus: Turmoil in sluggish electrons’ existence

An international team of physicists has monitored the scattering behaviour of electrons in a non-conducting material in real-time. Their insights could be beneficial for radiotherapy.

We can refer to electrons in non-conducting materials as ‘sluggish’. Typically, they remain fixed in a location, deep inside an atomic composite. It is hence...

Im Focus: Wafer-thin Magnetic Materials Developed for Future Quantum Technologies

Two-dimensional magnetic structures are regarded as a promising material for new types of data storage, since the magnetic properties of individual molecular building blocks can be investigated and modified. For the first time, researchers have now produced a wafer-thin ferrimagnet, in which molecules with different magnetic centers arrange themselves on a gold surface to form a checkerboard pattern. Scientists at the Swiss Nanoscience Institute at the University of Basel and the Paul Scherrer Institute published their findings in the journal Nature Communications.

Ferrimagnets are composed of two centers which are magnetized at different strengths and point in opposing directions. Two-dimensional, quasi-flat ferrimagnets...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Marine Conservation: IASS Contributes to UN Ocean Conference in New York on 5-9 June

24.05.2017 | Event News

AWK Aachen Machine Tool Colloquium 2017: Internet of Production for Agile Enterprises

23.05.2017 | Event News

Dortmund MST Conference presents Individualized Healthcare Solutions with micro and nanotechnology

22.05.2017 | Event News

 
Latest News

New insights into the ancestors of all complex life

29.05.2017 | Earth Sciences

New photocatalyst speeds up the conversion of carbon dioxide into chemical resources

29.05.2017 | Life Sciences

NASA's SDO sees partial eclipse in space

29.05.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>