Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Feeding caterpillars make leaves shine

05.06.2015

Scientists visualize calcium signals in plants which are elicited by wounding and ultimately regulate defense responses against herbivores.

When a plant is attacked by herbivores, this triggers a number of physiological responses in the plant. Calcium ions are important messengers for the processing of wound signals in plant cells. They regulate signal transduction and indirectly control plant defense mechanisms.


The image shows the amounts of light accumulated over a period of 30 minutes, highlighting the changing calcium concentrations. These are represented by a color code (blue=low, red=high).

Victoria Kiep / Martin Luther University, Halle-Wittenberg; Jyothilakshmi Vadassery / Max Planck Institute for Chemical Ecology


Spodoptera littoralis larva feeding on a Arabidopsis thaliana (thale cress) plant

Sandra Scholz and Monika Heyer / Max Planck Institute for Chemical Ecology

Scientists of the Max Planck Institute for Chemical Ecology in Jena and the Institute of Agricultural and Nutritional Science of the Martin Luther University in Halle-Wittenberg, Germany, have now succeeded in visualizing the immediate wound or herbivory responses in plants.

They used Arabidopsis thaliana (thale cress) plants that produce a special protein which breaks down after the binding of calcium ions and emits free energy in the form of light. The amount of light corresponds to the calcium concentrations in the cells of the respective leaf areas. By using a highly sensitive camera system the researchers could track the calcium flow in the plants.

Visualization revealed that calcium signals occur systemically and wander from attacked to neighboring leaves within a short period of time, and ultimately put the whole plant into a state of defense readiness. (New Phytologist, May 2015)

Calcium is a universal intracellular messenger. In plants, many physiological processes are mediated by calcium ions, especially responses to abiotic and biotic stresses, such as feeding caterpillars. These trigger the activation of a number of defense mechanisms. If a leaf is attacked by an insect, the wound signal which emanates from the affected leaf is transmitted to other, unattacked leaves.

In order to visualize this signal, the scientists performed experiments with transgenic Arabidopsis plants which were genetically modified to express a protein in the cytosol, the liquid inside the cells, which breaks down and releases light energy after it has bound calcium ions. The emitted light energy correlates with the respective concentrations of calcium ions.

In this way, intracellular changes of calcium levels can be determined directly. Moreover, these processes can be made visible in the plants by applying a highly sensitive camera system which uses charge-coupled devices (CCD). “It is very impressive to see how every bite of a caterpillar makes certain leaf areas shine. The immediate reaction of the plants is clearly visible,” says Victoria Kiep, who carried out most of the experimental work together with Jyothilakshmi Vadassery.

It was very important for the researchers to show that the calcium signal is a systemic process, rather than a local one, as it wanders from the attacked leaf to neighboring leaves within a few minutes to trigger the subsequent defense responses. “We succeeded in visualizing the dynamic signal processing of intracellular calcium as a secondary messenger which is elicited by insect feeding and transmitted systemically to unattacked areas of the plant,” Axel Mithöfer, the leader of the project group “Physiology of Plant Defense” in the Department of Bioorganic Chemistry, summarizes the results of the study.

How calcium signals are elicited in different and separate areas of plants is not yet fully understood. However, the scientists speculate that electric signals which are transmitted via the vascular system of plants, so-called vascular bundles, play an important role. There are no important differences between calcium signals which are elicited by mechanical wounding and those which are triggered by feeding caterpillars. Surprisingly, the application of larval oral secretions inhibited the transduction of calcium signals to neighboring leaves in the experiment. Of general importance for systemic calcium signaling is the wounding of the vascular system of the leaf, which is also responsible for the internal transport of water and nutrients in the plant.

Further experiments are planned in order to find out which kind of wounding triggers the systemic calcium signal, for example, whether a similar wound response is elicited by aphids and spider mites, as these insects puncture the plant tissue to suck the plant sap and damage the tissue only slightly. The scientists would like to investigate how signal transduction is achieved in grasses whose vascular bundles are structured differently in comparison to Arabidopsis which belongs to the Brassicaceae family. They are also interested in determining the operating distance of calcium signals in general and would like to answer the question whether the signals can be transmitted to the plant roots.

This study demonstrates that calcium signals, which are necessary for eliciting plant defense responses, and their spatial and temporal expansion can be visualized. Moreover, the scientists showed that calcium signaling can be studied directly in intact plants in different physiological and ecological contexts, which helps to better understand its role as a secondary messenger in plants. [AO/AM]

Original Publication:
Kiep, V., Vadassery, J., Lattke, J., Maaß, J.-P., Boland, W., Peiter, E., Mithöfer, A. (2015). Systemic cytosolic Ca2+ elevation is activated upon wounding and herbivory in Arabidopsis. New Phytologist. doi: 10.1111/nph.13493
http://dx.doi.org/10.1111/nph.13493

Further Information:
Dr. Axel Mithöfer, Max Planck Institute for Chemical Ecology, Hans-Knöll-Straße 8, 07745 Jena, Tel. +49 3641 57-1263, E-Mail amithoefer@ice.mpg.de

Contact and Picture Requests:
Angela Overmeyer M.A., Max Planck Institute for Chemical Ecology, Hans-Knöll-Str. 8, 07743 Jena, +49 3641 57-2110, E-Mail overmeyer@ice.mpg.de

Download von hochaufgelösten Fotos über http://www.ice.mpg.de/ext/downloads2015.html

Weitere Informationen:

http://www.ice.mpg.de/ext/1214.html
http://www.ice.mpg.de/ext/520.html (Research Group Defense Physiology)

Angela Overmeyer | Max-Planck-Institut für chemische Ökologie

More articles from Life Sciences:

nachricht Rochester scientists discover gene controlling genetic recombination rates
23.04.2018 | University of Rochester

nachricht One step closer to reality
20.04.2018 | Max-Planck-Institut für Entwicklungsbiologie

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Molecules Brilliantly Illuminated

Physicists at the Laboratory for Attosecond Physics, which is jointly run by Ludwig-Maximilians-Universität and the Max Planck Institute of Quantum Optics, have developed a high-power laser system that generates ultrashort pulses of light covering a large share of the mid-infrared spectrum. The researchers envisage a wide range of applications for the technology – in the early diagnosis of cancer, for instance.

Molecules are the building blocks of life. Like all other organisms, we are made of them. They control our biorhythm, and they can also reflect our state of...

Im Focus: Spider silk key to new bone-fixing composite

University of Connecticut researchers have created a biodegradable composite made of silk fibers that can be used to repair broken load-bearing bones without the complications sometimes presented by other materials.

Repairing major load-bearing bones such as those in the leg can be a long and uncomfortable process.

Im Focus: Writing and deleting magnets with lasers

Study published in the journal ACS Applied Materials & Interfaces is the outcome of an international effort that included teams from Dresden and Berlin in Germany, and the US.

Scientists at the Helmholtz-Zentrum Dresden-Rossendorf (HZDR) together with colleagues from the Helmholtz-Zentrum Berlin (HZB) and the University of Virginia...

Im Focus: Gamma-ray flashes from plasma filaments

Novel highly efficient and brilliant gamma-ray source: Based on model calculations, physicists of the Max PIanck Institute for Nuclear Physics in Heidelberg propose a novel method for an efficient high-brilliance gamma-ray source. A giant collimated gamma-ray pulse is generated from the interaction of a dense ultra-relativistic electron beam with a thin solid conductor. Energetic gamma-rays are copiously produced as the electron beam splits into filaments while propagating across the conductor. The resulting gamma-ray energy and flux enable novel experiments in nuclear and fundamental physics.

The typical wavelength of light interacting with an object of the microcosm scales with the size of this object. For atoms, this ranges from visible light to...

Im Focus: Basel researchers succeed in cultivating cartilage from stem cells

Stable joint cartilage can be produced from adult stem cells originating from bone marrow. This is made possible by inducing specific molecular processes occurring during embryonic cartilage formation, as researchers from the University and University Hospital of Basel report in the scientific journal PNAS.

Certain mesenchymal stem/stromal cells from the bone marrow of adults are considered extremely promising for skeletal tissue regeneration. These adult stem...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

Invitation to the upcoming "Current Topics in Bioinformatics: Big Data in Genomics and Medicine"

13.04.2018 | Event News

Unique scope of UV LED technologies and applications presented in Berlin: ICULTA-2018

12.04.2018 | Event News

IWOLIA: A conference bringing together German Industrie 4.0 and French Industrie du Futur

09.04.2018 | Event News

 
Latest News

Structured light and nanomaterials open new ways to tailor light at the nanoscale

23.04.2018 | Physics and Astronomy

On the shape of the 'petal' for the dissipation curve

23.04.2018 | Physics and Astronomy

Clean and Efficient – Fraunhofer ISE Presents Hydrogen Technologies at the HANNOVER MESSE 2018

23.04.2018 | Trade Fair News

VideoLinks
Science & Research
Overview of more VideoLinks >>>