Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Experimental evidence for a novel mechanism of transposition – Vector choice and gene transfer

02.03.2016

Transposons are mobile DNA segments that can cause disease, for example cancer, when they move to new locations in the genome. However, transposons can also be harnessed as tools for gene therapy of genetic diseases. Scientists at the Paul-Ehrlich-Institut, that evaluates such advanced therapies, discovered a new mechanism of genome shuffling by transposons (Nature Communications, 02.03.2016). By analysis of insertion sites of transposons and other gene transfer vehicles, the scientists also obtained evidence that the Sleeping Beauty transposon were inserted less frequently in undesired genomic locations than the other vector systems (Molecular Therapy, 12.01.2016).

Due to their numbers and mobility, transposable elements (jumping genes) have been playing an important role in genome evolution. There are two major classes of transposable elements:


Vector integration in or close to a gene (promoter = red arrow, three exons). a) Normal gene expression; b) Insertion into an exon; c) Insertion in an intron; d) Insertion into a promoter region.

Source: PEI

DNA transposons that move through a non-replicative mechanism, and retrotransposons that generate copies of themselves and move by a replicative mechanism. Around the turn of the century, a new group of transposons were postulated, the Helitron elements, which were proposed to represent the first replicative DNA transposons in eukaryotes. However, not a single transpositionally active Helitron transposon has yet been isolated.

The research group of Dr. Zoltan Ivics, head of the Division of Medical Biotechnology, in collaboration with scientists at the Max Delbrueck Center for Molecular Medicine in Berlin and with other international collaborators, used molecular biology methods to reconstruct Helraiser, an ancient Helitron transposon in the bat genome.

The scientists used this transposon as a model to study the transposition mechanism of Helitrons in the genome. They established a novel mechanism of genome shuffling, during which the transposon picks up and carries host cell DNA over to new genomic locations [1]. Ivics and his colleagues believe that the unique features of Helraiser could be exploited for the purpose of gene transfer.

For example, the genome shuffling feature could be utilized to distribute transcriptional regulatory signals in the genome of cell-based models. Moreover, the scientists showed that a covalently closed circular form of the transposon acts as an intermediate molecule during transposition, suggesting a replicative process. This feature would be highly useful for the generation of cell-based models where multiple copies of a transgene are required.

The utility of Sleeping Beauty, an engineered transposon reconstructed from >10 million-year-old elements found in fish genomes, has been previously highlighted by Ivics and his collaborators. For example, the Sleeping Beauty transposon is highly efficient to move gene constructs into the germline of experimental animals [3-5], and this can be useful for the generation of animal models for preclinical drug testing.

Vector choice and the safety of gene transfer

Another research focus of Ivics and his colleagues is the potential risks of gene vector integration in the context of gene therapy. As gene transfer tools, among other systems, vectors derived from the Mouse Leukemia Virus (MLV), the HIV lentivirus and transposons can be used. Ivics and his collaborators compared the genome-wide distribution of insertion sites of the Sleeping Beauty and piggyBac transposons and the MLV and HIV retroviral vectors in a certain type of cell of the human immune system, the CD4+ T cells [2].

The scientists found that the Sleeping Beauty transposon has the highest chance of integrating into safe genomic sites (so called "safe harbor" sites). In contrast, the highly similar insertion profiles of the MLV retrovirus and the piggyBac transposon showed that they are often inserted in genomic regions where the integration of a gene construct could carry a risk.

Indeed, the scientists found markedly different frequencies of the four vector systems to target genes, whose deregulation was previously found to be associated with severe adverse events in gene therapy clinical trials. "Our data underscore the importance of vector choice for therapeutic gene transfer to minimize potential mutagenic effects on cells, and suggest that Sleeping Beauty could have an advantage in this respect in comparison with some other vector systems" – explains Ivics.

Original Publications

1. Grabundzija I, Messing SA, Thomas J, Cosby RL, Bilic I, Miskey C, Gogol-Döring A, Kapitonov V, Gerhardt DJ, Diem T, Dalda A, Jurka J, Pritham EJ, Dyda F, Izsvák Z, Ivics Z (2016): A Helitron Transposon Resurrected From the Bat Genome Reveals a Novel Mechanism of Genome Shuffling in Eukaryotes.
Nat Commun Mar 2 [Epub ahead of print].
DOI 10.1038/NCOMMS10716

2. Gogol-Döring A, Ammar I, Gupta S, Bunse M, Miskey C, Chen W, Uckert W, Schulz TF, Izsvák Z, Ivics Z (2016): Genome-Wide Profiling Reveals Remarkable Parallels Between Insertion Site Selection Properties of the MLV Retrovirus and the piggyBac Transposon in Primary Human CD4+ T Cells.
Mol Ther Jan 12 [Epub ahead of print].
DOI: 10.1038/mt.2016.11

3. Ivics Z, Garrels W, Mátés L, Yau TY, Bashir S, Zidek V, Landa V, Geurts A, Pravenec M, Rülicke T, Kues WA, Izsvák Z (2014): Germline transgenesis in pigs by cytoplasmic microinjection of Sleeping Beauty transposons.
Nat Protoc 9: 810-827.

4. Ivics Z, Hiripi L, Hoffmann OI, Mátés L, Yau TY, Bashir S, Zidek V, Landa V, Geurts A, Pravenec M, Rülicke T, Bösze Z, Izsvák Z (2014): Germline transgenesis in rabbits by pronuclear microinjection of Sleeping Beauty transposons.
Nat Protoc 9: 794-809.

Online-Abstract


5. Ivics Z, Mátés L, Yau TY, Landa V, Zidek V, Bashir S, Hoffmann OI, Hiripi L, Garrels W, Kues WA, Bösze Z, Geurts A, Pravenec M, Rülicke T, Izsvák Z (2014): Germline transgenesis in rodents by pronuclear microinjection of Sleeping Beauty transposons.
Nat Protoc 9: 773-793.


The Paul-Ehrlich-Institut, the Federal Institute for Vaccines and Biomedicines, in Langen near Frankfurt/Main is a senior federal authority reporting to the Federal Ministry of Health (Bundesministerium für Gesundheit, BMG). It is responsible for the research, assessment, and marketing authorisation of biomedicines for human use and immunological veterinary medicinal products. Its remit also includes the authorisation of clinical trials and pharmacovigilance, i.e. recording and evaluation of potential adverse effects.

Other duties of the institute include official batch control, scientific advice and inspections. In-house experimental research in the field of biomedicines and life science form an indispensable basis for the manifold tasks performed at the institute.

The Paul-Ehrlich-Institut, with its roughly 800 members of staff, also has advisory functions nationally (federal government, federal states (Länder)), and internationally (World Health Organisation, European Medicines Agency, European Commission, Council of Europe etc.).

Weitere Informationen:

http://www.nature.com/ncomms/2016/160302/ncomms10716/full/ncomms10716.html - Abstract Nature Communications Paper (DOI 10.1038/NCOMMS10716)
http://www.ncbi.nlm.nih.gov/pubmed/26755332 - Abstract Molecular Therapy Paper (DOI: 10.1038/mt.2016.11)
http://www.pei.de/EN/information/journalists-press/press-releases/2016/06-experi... - this press release on PEI-Website (Hyperlinks to each of the five articles)

Dr. Susanne Stöcker | idw - Informationsdienst Wissenschaft

More articles from Life Sciences:

nachricht A novel socio-ecological approach helps identifying suitable wolf habitats
17.02.2017 | Universität Zürich

nachricht New, ultra-flexible probes form reliable, scar-free integration with the brain
16.02.2017 | University of Texas at Austin

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Breakthrough with a chain of gold atoms

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

Im Focus: DNA repair: a new letter in the cell alphabet

Results reveal how discoveries may be hidden in scientific “blind spots”

Cells need to repair damaged DNA in our genes to prevent the development of cancer and other diseases. Our cells therefore activate and send “repair-proteins”...

Im Focus: Dresdner scientists print tomorrow’s world

The Fraunhofer IWS Dresden and Technische Universität Dresden inaugurated their jointly operated Center for Additive Manufacturing Dresden (AMCD) with a festive ceremony on February 7, 2017. Scientists from various disciplines perform research on materials, additive manufacturing processes and innovative technologies, which build up components in a layer by layer process. This technology opens up new horizons for component design and combinations of functions. For example during fabrication, electrical conductors and sensors are already able to be additively manufactured into components. They provide information about stress conditions of a product during operation.

The 3D-printing technology, or additive manufacturing as it is often called, has long made the step out of scientific research laboratories into industrial...

Im Focus: Mimicking nature's cellular architectures via 3-D printing

Research offers new level of control over the structure of 3-D printed materials

Nature does amazing things with limited design materials. Grass, for example, can support its own weight, resist strong wind loads, and recover after being...

Im Focus: Three Magnetic States for Each Hole

Nanometer-scale magnetic perforated grids could create new possibilities for computing. Together with international colleagues, scientists from the Helmholtz Zentrum Dresden-Rossendorf (HZDR) have shown how a cobalt grid can be reliably programmed at room temperature. In addition they discovered that for every hole ("antidot") three magnetic states can be configured. The results have been published in the journal "Scientific Reports".

Physicist Dr. Rantej Bali from the HZDR, together with scientists from Singapore and Australia, designed a special grid structure in a thin layer of cobalt in...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Booth and panel discussion – The Lindau Nobel Laureate Meetings at the AAAS 2017 Annual Meeting

13.02.2017 | Event News

Complex Loading versus Hidden Reserves

10.02.2017 | Event News

International Conference on Crystal Growth in Freiburg

09.02.2017 | Event News

 
Latest News

Biocompatible 3-D tracking system has potential to improve robot-assisted surgery

17.02.2017 | Medical Engineering

Real-time MRI analysis powered by supercomputers

17.02.2017 | Medical Engineering

Antibiotic effective against drug-resistant bacteria in pediatric skin infections

17.02.2017 | Health and Medicine

VideoLinks
B2B-VideoLinks
More VideoLinks >>>