Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Experimental evidence for a novel mechanism of transposition – Vector choice and gene transfer

02.03.2016

Transposons are mobile DNA segments that can cause disease, for example cancer, when they move to new locations in the genome. However, transposons can also be harnessed as tools for gene therapy of genetic diseases. Scientists at the Paul-Ehrlich-Institut, that evaluates such advanced therapies, discovered a new mechanism of genome shuffling by transposons (Nature Communications, 02.03.2016). By analysis of insertion sites of transposons and other gene transfer vehicles, the scientists also obtained evidence that the Sleeping Beauty transposon were inserted less frequently in undesired genomic locations than the other vector systems (Molecular Therapy, 12.01.2016).

Due to their numbers and mobility, transposable elements (jumping genes) have been playing an important role in genome evolution. There are two major classes of transposable elements:


Vector integration in or close to a gene (promoter = red arrow, three exons). a) Normal gene expression; b) Insertion into an exon; c) Insertion in an intron; d) Insertion into a promoter region.

Source: PEI

DNA transposons that move through a non-replicative mechanism, and retrotransposons that generate copies of themselves and move by a replicative mechanism. Around the turn of the century, a new group of transposons were postulated, the Helitron elements, which were proposed to represent the first replicative DNA transposons in eukaryotes. However, not a single transpositionally active Helitron transposon has yet been isolated.

The research group of Dr. Zoltan Ivics, head of the Division of Medical Biotechnology, in collaboration with scientists at the Max Delbrueck Center for Molecular Medicine in Berlin and with other international collaborators, used molecular biology methods to reconstruct Helraiser, an ancient Helitron transposon in the bat genome.

The scientists used this transposon as a model to study the transposition mechanism of Helitrons in the genome. They established a novel mechanism of genome shuffling, during which the transposon picks up and carries host cell DNA over to new genomic locations [1]. Ivics and his colleagues believe that the unique features of Helraiser could be exploited for the purpose of gene transfer.

For example, the genome shuffling feature could be utilized to distribute transcriptional regulatory signals in the genome of cell-based models. Moreover, the scientists showed that a covalently closed circular form of the transposon acts as an intermediate molecule during transposition, suggesting a replicative process. This feature would be highly useful for the generation of cell-based models where multiple copies of a transgene are required.

The utility of Sleeping Beauty, an engineered transposon reconstructed from >10 million-year-old elements found in fish genomes, has been previously highlighted by Ivics and his collaborators. For example, the Sleeping Beauty transposon is highly efficient to move gene constructs into the germline of experimental animals [3-5], and this can be useful for the generation of animal models for preclinical drug testing.

Vector choice and the safety of gene transfer

Another research focus of Ivics and his colleagues is the potential risks of gene vector integration in the context of gene therapy. As gene transfer tools, among other systems, vectors derived from the Mouse Leukemia Virus (MLV), the HIV lentivirus and transposons can be used. Ivics and his collaborators compared the genome-wide distribution of insertion sites of the Sleeping Beauty and piggyBac transposons and the MLV and HIV retroviral vectors in a certain type of cell of the human immune system, the CD4+ T cells [2].

The scientists found that the Sleeping Beauty transposon has the highest chance of integrating into safe genomic sites (so called "safe harbor" sites). In contrast, the highly similar insertion profiles of the MLV retrovirus and the piggyBac transposon showed that they are often inserted in genomic regions where the integration of a gene construct could carry a risk.

Indeed, the scientists found markedly different frequencies of the four vector systems to target genes, whose deregulation was previously found to be associated with severe adverse events in gene therapy clinical trials. "Our data underscore the importance of vector choice for therapeutic gene transfer to minimize potential mutagenic effects on cells, and suggest that Sleeping Beauty could have an advantage in this respect in comparison with some other vector systems" – explains Ivics.

Original Publications

1. Grabundzija I, Messing SA, Thomas J, Cosby RL, Bilic I, Miskey C, Gogol-Döring A, Kapitonov V, Gerhardt DJ, Diem T, Dalda A, Jurka J, Pritham EJ, Dyda F, Izsvák Z, Ivics Z (2016): A Helitron Transposon Resurrected From the Bat Genome Reveals a Novel Mechanism of Genome Shuffling in Eukaryotes.
Nat Commun Mar 2 [Epub ahead of print].
DOI 10.1038/NCOMMS10716

2. Gogol-Döring A, Ammar I, Gupta S, Bunse M, Miskey C, Chen W, Uckert W, Schulz TF, Izsvák Z, Ivics Z (2016): Genome-Wide Profiling Reveals Remarkable Parallels Between Insertion Site Selection Properties of the MLV Retrovirus and the piggyBac Transposon in Primary Human CD4+ T Cells.
Mol Ther Jan 12 [Epub ahead of print].
DOI: 10.1038/mt.2016.11

3. Ivics Z, Garrels W, Mátés L, Yau TY, Bashir S, Zidek V, Landa V, Geurts A, Pravenec M, Rülicke T, Kues WA, Izsvák Z (2014): Germline transgenesis in pigs by cytoplasmic microinjection of Sleeping Beauty transposons.
Nat Protoc 9: 810-827.

4. Ivics Z, Hiripi L, Hoffmann OI, Mátés L, Yau TY, Bashir S, Zidek V, Landa V, Geurts A, Pravenec M, Rülicke T, Bösze Z, Izsvák Z (2014): Germline transgenesis in rabbits by pronuclear microinjection of Sleeping Beauty transposons.
Nat Protoc 9: 794-809.

Online-Abstract


5. Ivics Z, Mátés L, Yau TY, Landa V, Zidek V, Bashir S, Hoffmann OI, Hiripi L, Garrels W, Kues WA, Bösze Z, Geurts A, Pravenec M, Rülicke T, Izsvák Z (2014): Germline transgenesis in rodents by pronuclear microinjection of Sleeping Beauty transposons.
Nat Protoc 9: 773-793.


The Paul-Ehrlich-Institut, the Federal Institute for Vaccines and Biomedicines, in Langen near Frankfurt/Main is a senior federal authority reporting to the Federal Ministry of Health (Bundesministerium für Gesundheit, BMG). It is responsible for the research, assessment, and marketing authorisation of biomedicines for human use and immunological veterinary medicinal products. Its remit also includes the authorisation of clinical trials and pharmacovigilance, i.e. recording and evaluation of potential adverse effects.

Other duties of the institute include official batch control, scientific advice and inspections. In-house experimental research in the field of biomedicines and life science form an indispensable basis for the manifold tasks performed at the institute.

The Paul-Ehrlich-Institut, with its roughly 800 members of staff, also has advisory functions nationally (federal government, federal states (Länder)), and internationally (World Health Organisation, European Medicines Agency, European Commission, Council of Europe etc.).

Weitere Informationen:

http://www.nature.com/ncomms/2016/160302/ncomms10716/full/ncomms10716.html - Abstract Nature Communications Paper (DOI 10.1038/NCOMMS10716)
http://www.ncbi.nlm.nih.gov/pubmed/26755332 - Abstract Molecular Therapy Paper (DOI: 10.1038/mt.2016.11)
http://www.pei.de/EN/information/journalists-press/press-releases/2016/06-experi... - this press release on PEI-Website (Hyperlinks to each of the five articles)

Dr. Susanne Stöcker | idw - Informationsdienst Wissenschaft

More articles from Life Sciences:

nachricht How brains surrender to sleep
23.06.2017 | IMP - Forschungsinstitut für Molekulare Pathologie GmbH

nachricht A new technique isolates neuronal activity during memory consolidation
22.06.2017 | Spanish National Research Council (CSIC)

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Can we see monkeys from space? Emerging technologies to map biodiversity

An international team of scientists has proposed a new multi-disciplinary approach in which an array of new technologies will allow us to map biodiversity and the risks that wildlife is facing at the scale of whole landscapes. The findings are published in Nature Ecology and Evolution. This international research is led by the Kunming Institute of Zoology from China, University of East Anglia, University of Leicester and the Leibniz Institute for Zoo and Wildlife Research.

Using a combination of satellite and ground data, the team proposes that it is now possible to map biodiversity with an accuracy that has not been previously...

Im Focus: Climate satellite: Tracking methane with robust laser technology

Heatwaves in the Arctic, longer periods of vegetation in Europe, severe floods in West Africa – starting in 2021, scientists want to explore the emissions of the greenhouse gas methane with the German-French satellite MERLIN. This is made possible by a new robust laser system of the Fraunhofer Institute for Laser Technology ILT in Aachen, which achieves unprecedented measurement accuracy.

Methane is primarily the result of the decomposition of organic matter. The gas has a 25 times greater warming potential than carbon dioxide, but is not as...

Im Focus: How protons move through a fuel cell

Hydrogen is regarded as the energy source of the future: It is produced with solar power and can be used to generate heat and electricity in fuel cells. Empa researchers have now succeeded in decoding the movement of hydrogen ions in crystals – a key step towards more efficient energy conversion in the hydrogen industry of tomorrow.

As charge carriers, electrons and ions play the leading role in electrochemical energy storage devices and converters such as batteries and fuel cells. Proton...

Im Focus: A unique data centre for cosmological simulations

Scientists from the Excellence Cluster Universe at the Ludwig-Maximilians-Universität Munich have establised "Cosmowebportal", a unique data centre for cosmological simulations located at the Leibniz Supercomputing Centre (LRZ) of the Bavarian Academy of Sciences. The complete results of a series of large hydrodynamical cosmological simulations are available, with data volumes typically exceeding several hundred terabytes. Scientists worldwide can interactively explore these complex simulations via a web interface and directly access the results.

With current telescopes, scientists can observe our Universe’s galaxies and galaxy clusters and their distribution along an invisible cosmic web. From the...

Im Focus: Scientists develop molecular thermometer for contactless measurement using infrared light

Temperature measurements possible even on the smallest scale / Molecular ruby for use in material sciences, biology, and medicine

Chemists at Johannes Gutenberg University Mainz (JGU) in cooperation with researchers of the German Federal Institute for Materials Research and Testing (BAM)...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Plants are networkers

19.06.2017 | Event News

Digital Survival Training for Executives

13.06.2017 | Event News

Global Learning Council Summit 2017

13.06.2017 | Event News

 
Latest News

Quantum thermometer or optical refrigerator?

23.06.2017 | Physics and Astronomy

A 100-year-old physics problem has been solved at EPFL

23.06.2017 | Physics and Astronomy

Equipping form with function

23.06.2017 | Information Technology

VideoLinks
B2B-VideoLinks
More VideoLinks >>>