Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Exact pol(e) position - precisely where the polymerase is changed

22.01.2016

Scientists at the Helmholtz Zentrum München, working with colleagues from the Ludwig-Maximilians-Universität München, have developed a method for the thorough analysis of protein modifications. They mapped the phosphorylation sites of the RNA polymerase II enzyme, which is responsible for expressing our genes. The results have now been published in the 'Molecular Cell' scientific journal.

The contents in our genetic information are actually silent (meaning inactive) and first have to be made to "speak". Like the read head in a tape recorder, RNA polymerase II, Pol II for short, runs over the DNA (tape) and transcribes the genetic and epigenetic information into RNA. In order to keep the enzyme from working randomly, however, it is dynamically modified at many different points in order to control its activity depending on the situation.


Source: Helmholtz Zentrum München

"Phosphorylation makes it possible to influence the activity of the enzyme at 240 different sites," explains Prof. Dirk Eick, the study's last author and head of the Research Unit Molecular Epigenetics at Helmholtz Zentrum München. Together with colleagues from the Biomedical Center and Gene Center of the Ludwig-Maximilians-Universität München and the Max Planck Institute for Biophysical Chemistry in Göttingen, Germany, he and his team have developed a method for simultaneously examining all 240 sites in Pol II.

"The trick is a combination of genetic and mass spectrometric* methods," reveals first author Dr. Roland Schüller. "By producing genetically modified variants of the regions in question, we can examine each individual phosphorylation site with a mass spectrometer." This allows the researchers to determine exactly how and precisely where certain enzymes that influence phosphorylation act. The scientists also successfully compared the Pol II modification patterns in humans and in yeast.

"The regulation of the transcription of genes by Pol II is an elementary process in life and gene regulation deviations are the basis for many human disorders," study leader Eick explains the work’s background. "Research into the phosphorylation pattern at certain times during the transcription cycle is therefore necessary in order to be able to gain an understanding of the underlying mechanisms of gene regulation at the transcription level sometime in the future."

Further information

Background
* Mass spectrometry is a procedure that makes it possible to determine the mass of tiny molecules. This is done by transferring the substance to be examined into the gas phase and then electrically charging it. As a result of this charge, the molecules (or smaller fragments) can be accelerated through an electric field. The arrival of the molecules at the end of this field is then measured. Each molecule has its own flight duration that depends on the mass and that allows the substances to be sorted.

Original publication:
Schüller, R. et al. (2015). Heptad-specific Phosphorylation of RNA Polymerase II CTD, Molecular Cell
DOI: 10.1016/j.molcel.2015.12.003
http://www.cell.com/molecular-cell/abstract/S1097-2765%2815%2900937-5

The Helmholtz Zentrum München, the German Research Center for Environmental Health, pursues the goal of developing personalized medical approaches to the prevention and therapy of major common diseases such as diabetes and lung disease. To achieve this, it investigates the interaction of genetics, environmental factors and lifestyle. The Helmholtz Zentrum München has about 2,300 staff members and is headquartered in Neuherberg in the north of Munich. It is a member of the Helmholtz Association, a community of 18 scientific-technical and medical-biological research centers with a total of about 37,000 staff members. The Helmholtz Zentrum München is a partner in the German Center for Diabetes Research.

As one of Europe's leading research universities, LMU Munich is committed to the highest international standards of excellence in research and teaching. Building on its 500-year-tradition of scholarship, LMU covers a broad spectrum of disciplines, ranging from the humanities and cultural studies through law, economics and social studies to medicine and the sciences. 15 percent of LMU‘s 50,000 students come from abroad, originating from 130 countries worldwide. The know-how and creativity of LMU's academics form the foundation of the University's outstanding research record. This is also reflected in LMU‘s designation of as a "university of excellence" in the context of the Excellence Initiative, a nationwide competition to promote top-level university research.

Contact for the media:
Department of Communication, Helmholtz Zentrum München – German Research Center for Environmental Health (GmbH), Ingolstädter Landstr. 1, 85764 Neuherberg – Tel. +49 89 3187 2238 - Fax: +49 89 3187 3324 – E-mail: presse@helmholtz-muenchen.de

Scientific contact at Helmholtz Zentrum München:
Prof. Dr. Dirk Eick, Helmholtz Zentrum München - German Research Center for Environmental Health (GmbH), Research Unit Molecular Epigenetics, Marchioninistraße 25, 81377 München - Tel. +49 89 3187-1512 – E-mail: eick@helmholtz-muenchen.de

Weitere Informationen:

https://www.helmholtz-muenchen.de/en/index.html

Sonja Opitz | Helmholtz Zentrum München - Deutsches Forschungszentrum für Gesundheit und Umwelt

More articles from Life Sciences:

nachricht Multi-institutional collaboration uncovers how molecular machines assemble
02.12.2016 | Salk Institute

nachricht Fertilized egg cells trigger and monitor loss of sperm’s epigenetic memory
02.12.2016 | IMBA - Institut für Molekulare Biotechnologie der Österreichischen Akademie der Wissenschaften GmbH

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Novel silicon etching technique crafts 3-D gradient refractive index micro-optics

A multi-institutional research collaboration has created a novel approach for fabricating three-dimensional micro-optics through the shape-defined formation of porous silicon (PSi), with broad impacts in integrated optoelectronics, imaging, and photovoltaics.

Working with colleagues at Stanford and The Dow Chemical Company, researchers at the University of Illinois at Urbana-Champaign fabricated 3-D birefringent...

Im Focus: Quantum Particles Form Droplets

In experiments with magnetic atoms conducted at extremely low temperatures, scientists have demonstrated a unique phase of matter: The atoms form a new type of quantum liquid or quantum droplet state. These so called quantum droplets may preserve their form in absence of external confinement because of quantum effects. The joint team of experimental physicists from Innsbruck and theoretical physicists from Hannover report on their findings in the journal Physical Review X.

“Our Quantum droplets are in the gas phase but they still drop like a rock,” explains experimental physicist Francesca Ferlaino when talking about the...

Im Focus: MADMAX: Max Planck Institute for Physics takes up axion research

The Max Planck Institute for Physics (MPP) is opening up a new research field. A workshop from November 21 - 22, 2016 will mark the start of activities for an innovative axion experiment. Axions are still only purely hypothetical particles. Their detection could solve two fundamental problems in particle physics: What dark matter consists of and why it has not yet been possible to directly observe a CP violation for the strong interaction.

The “MADMAX” project is the MPP’s commitment to axion research. Axions are so far only a theoretical prediction and are difficult to detect: on the one hand,...

Im Focus: Molecules change shape when wet

Broadband rotational spectroscopy unravels structural reshaping of isolated molecules in the gas phase to accommodate water

In two recent publications in the Journal of Chemical Physics and in the Journal of Physical Chemistry Letters, researchers around Melanie Schnell from the Max...

Im Focus: Fraunhofer ISE Develops Highly Compact, High Frequency DC/DC Converter for Aviation

The efficiency of power electronic systems is not solely dependent on electrical efficiency but also on weight, for example, in mobile systems. When the weight of relevant components and devices in airplanes, for instance, is reduced, fuel savings can be achieved and correspondingly greenhouse gas emissions decreased. New materials and components based on gallium nitride (GaN) can help to reduce weight and increase the efficiency. With these new materials, power electronic switches can be operated at higher switching frequency, resulting in higher power density and lower material costs.

Researchers at the Fraunhofer Institute for Solar Energy Systems ISE together with partners have investigated how these materials can be used to make power...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

ICTM Conference 2017: Production technology for turbomachine manufacturing of the future

16.11.2016 | Event News

Innovation Day Laser Technology – Laser Additive Manufacturing

01.11.2016 | Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

 
Latest News

UTSA study describes new minimally invasive device to treat cancer and other illnesses

02.12.2016 | Medical Engineering

Plasma-zapping process could yield trans fat-free soybean oil product

02.12.2016 | Agricultural and Forestry Science

What do Netflix, Google and planetary systems have in common?

02.12.2016 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>