Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Evolution of competitiveness

29.10.2014

Virtually all organisms in the living world compete with members of their own species. However, individuals differ strongly in how much they invest into their competitive ability.

 Some individuals are highly competitive and eager to get access to high-quality resources, while others seem to avoid competition, instead making prudent use of the lower-quality resources that are left over for them. A theoretical study published in “Nature Communications” sheds some new light on these findings. The authors demonstrate that the evolution of competitiveness has a strong tendency towards diversification.

To analyse the evolution of competitiveness, a team of scientists from the Universities of Bonn (Germany), Bielefeld (Germany) and Groningen (Netherlands) developed a model that reflects the idea that competitiveness comes at a price. In the model, individuals that invest a lot into being competitive gain access to high-quality resources, but the features making them competitive hamper them in making maximal use of these resources.

“In many organisms, some individuals invest a lot into being successful in the competition with their conspecifics”, says Sebastian Baldauf from the University of Bonn, first author of the study. “They grow, for example, weaponry like horns or antlers and do hardly feed in order to be able to conquer and defend large territories. This may secure them many matings, but they might get more fitness out of each mating when they would spend their energy on other activities, like paternal care.”

The simple assumption that individuals with highest competitive ability are not able to make maximal use of the acquired resources suffices to explain the diversity in competitiveness observed in nature. If not too much is at stake, that is, if high-competitive individuals acquire only slightly better resources than low-competitive individuals, evolution leads to the stable coexistence of two types of individuals: one type does not invest into competition at all and is content with lower-quality resources, and a second type that invest an appreciable (but not maximal) part of their energy into being competitive.

If much is at stake, such coexistence does not occur. Instead, the model predicts cyclical changes in competitive ability over time. For large periods, there is an arm’s race to the top, leading to an ever-increasing degree of competitiveness in the population. This process continues until the costs of competitiveness become too high: competitiveness crashes to zero, but once there the whole rat race starts again. “Hence, the same model explains the coexistence of alternative strategies and the change of competitiveness in time”, Baldauf says. “Moreover, the model can explain the variation in competitiveness across populations of the same species.”

Heating up the fire

The study also considers how the evolution of competitiveness is affected by external factors. As an example, the authors considered the joint evolution of competitiveness in males and the evolution of preferences in females for either high- or low-competitive males. “We were interested in the question whether females evolve preferences for males with high-quality resources but little energy left for paternal care or for males that are content with low-quality resources but able to compensate by providing much care,” says Leif Engqvist, co-author of the study. It turned out that females almost always evolved preferences for highly competitive males, even if mating with uncompetitive but caring males would have resulted in more offspring. These preferences, in turn, fuelled the males’ arm’s race towards higher and higher levels of competitiveness. Engqvist: “In stressful times, like periods of food shortage, this process can even lead to population extinction, since the investment in competition exceeds the value of the resources.”

“Extreme care is required when transferring insights from a simple evolutionary model to humans“, says Franjo Weissing from the University of Groningen. “Our article therefore does not say too much about competitiveness in humans. However, also in humans there is huge diversity in competitiveness, and individuals with highest competitive ability often seem least prudent in the exploitation of their resources. It is therefore tempting to speculate that the external stimulation of competitiveness by societal pressure, which is analogous to the stimulation of competitiveness by the female preferences in our model, can lead to such a wastage of resources that our future survival is threatened.”

Reference:
Baldauf, S.A., Engqvist, L. & Weissing, F.J. (2014): Diversifying evolution of competitiveness. Nature Communications, doi: 10.1038/ncomms6233

Media contacts:

Dr. Sebastian A. Baldauf
Institute for Evolutionary Biology and Ecology
University of Bonn
Tel. +49-(0)228-735749
E-Mail: sbaldauf@evolution.uni-bonn.de

Prof. Dr. Franz J. Weissing
Centre for Ecological and Evolutionary Studies
University of Groningen
Tel. +31-(0)50-3632131 or -3638669
E-Mail: f.j.weissing@rug.nl

Dr. Leif Engqvist
Abteilung Evolutionsbiologie
University of Bielefeld
Tel. +49-(0)521-1062822
E-Mail: leif.engqvist@uni-bielefeld.de

Johannes Seiler | idw - Informationsdienst Wissenschaft
Further information:
http://www.uni-bonn.de/

More articles from Life Sciences:

nachricht Link Discovered between Immune System, Brain Structure and Memory
26.04.2017 | Universität Basel

nachricht Researchers develop eco-friendly, 4-in-1 catalyst
25.04.2017 | Brown University

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Making lightweight construction suitable for series production

More and more automobile companies are focusing on body parts made of carbon fiber reinforced plastics (CFRP). However, manufacturing and repair costs must be further reduced in order to make CFRP more economical in use. Together with the Volkswagen AG and five other partners in the project HolQueSt 3D, the Laser Zentrum Hannover e.V. (LZH) has developed laser processes for the automatic trimming, drilling and repair of three-dimensional components.

Automated manufacturing processes are the basis for ultimately establishing the series production of CFRP components. In the project HolQueSt 3D, the LZH has...

Im Focus: Wonder material? Novel nanotube structure strengthens thin films for flexible electronics

Reflecting the structure of composites found in nature and the ancient world, researchers at the University of Illinois at Urbana-Champaign have synthesized thin carbon nanotube (CNT) textiles that exhibit both high electrical conductivity and a level of toughness that is about fifty times higher than copper films, currently used in electronics.

"The structural robustness of thin metal films has significant importance for the reliable operation of smart skin and flexible electronics including...

Im Focus: Deep inside Galaxy M87

The nearby, giant radio galaxy M87 hosts a supermassive black hole (BH) and is well-known for its bright jet dominating the spectrum over ten orders of magnitude in frequency. Due to its proximity, jet prominence, and the large black hole mass, M87 is the best laboratory for investigating the formation, acceleration, and collimation of relativistic jets. A research team led by Silke Britzen from the Max Planck Institute for Radio Astronomy in Bonn, Germany, has found strong indication for turbulent processes connecting the accretion disk and the jet of that galaxy providing insights into the longstanding problem of the origin of astrophysical jets.

Supermassive black holes form some of the most enigmatic phenomena in astrophysics. Their enormous energy output is supposed to be generated by the...

Im Focus: A Quantum Low Pass for Photons

Physicists in Garching observe novel quantum effect that limits the number of emitted photons.

The probability to find a certain number of photons inside a laser pulse usually corresponds to a classical distribution of independent events, the so-called...

Im Focus: Microprocessors based on a layer of just three atoms

Microprocessors based on atomically thin materials hold the promise of the evolution of traditional processors as well as new applications in the field of flexible electronics. Now, a TU Wien research team led by Thomas Müller has made a breakthrough in this field as part of an ongoing research project.

Two-dimensional materials, or 2D materials for short, are extremely versatile, although – or often more precisely because – they are made up of just one or a...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Expert meeting “Health Business Connect” will connect international medical technology companies

20.04.2017 | Event News

Wenn der Computer das Gehirn austrickst

18.04.2017 | Event News

7th International Conference on Crystalline Silicon Photovoltaics in Freiburg on April 3-5, 2017

03.04.2017 | Event News

 
Latest News

Scientist invents way to trigger artificial photosynthesis to clean air

26.04.2017 | Materials Sciences

Ammonium nitrogen input increases the synthesis of anticarcinogenic compounds in broccoli

26.04.2017 | Agricultural and Forestry Science

SwRI-led team discovers lull in Mars' giant impact history

26.04.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>