Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Evolution of competitiveness

29.10.2014

Virtually all organisms in the living world compete with members of their own species. However, individuals differ strongly in how much they invest into their competitive ability.

 Some individuals are highly competitive and eager to get access to high-quality resources, while others seem to avoid competition, instead making prudent use of the lower-quality resources that are left over for them. A theoretical study published in “Nature Communications” sheds some new light on these findings. The authors demonstrate that the evolution of competitiveness has a strong tendency towards diversification.

To analyse the evolution of competitiveness, a team of scientists from the Universities of Bonn (Germany), Bielefeld (Germany) and Groningen (Netherlands) developed a model that reflects the idea that competitiveness comes at a price. In the model, individuals that invest a lot into being competitive gain access to high-quality resources, but the features making them competitive hamper them in making maximal use of these resources.

“In many organisms, some individuals invest a lot into being successful in the competition with their conspecifics”, says Sebastian Baldauf from the University of Bonn, first author of the study. “They grow, for example, weaponry like horns or antlers and do hardly feed in order to be able to conquer and defend large territories. This may secure them many matings, but they might get more fitness out of each mating when they would spend their energy on other activities, like paternal care.”

The simple assumption that individuals with highest competitive ability are not able to make maximal use of the acquired resources suffices to explain the diversity in competitiveness observed in nature. If not too much is at stake, that is, if high-competitive individuals acquire only slightly better resources than low-competitive individuals, evolution leads to the stable coexistence of two types of individuals: one type does not invest into competition at all and is content with lower-quality resources, and a second type that invest an appreciable (but not maximal) part of their energy into being competitive.

If much is at stake, such coexistence does not occur. Instead, the model predicts cyclical changes in competitive ability over time. For large periods, there is an arm’s race to the top, leading to an ever-increasing degree of competitiveness in the population. This process continues until the costs of competitiveness become too high: competitiveness crashes to zero, but once there the whole rat race starts again. “Hence, the same model explains the coexistence of alternative strategies and the change of competitiveness in time”, Baldauf says. “Moreover, the model can explain the variation in competitiveness across populations of the same species.”

Heating up the fire

The study also considers how the evolution of competitiveness is affected by external factors. As an example, the authors considered the joint evolution of competitiveness in males and the evolution of preferences in females for either high- or low-competitive males. “We were interested in the question whether females evolve preferences for males with high-quality resources but little energy left for paternal care or for males that are content with low-quality resources but able to compensate by providing much care,” says Leif Engqvist, co-author of the study. It turned out that females almost always evolved preferences for highly competitive males, even if mating with uncompetitive but caring males would have resulted in more offspring. These preferences, in turn, fuelled the males’ arm’s race towards higher and higher levels of competitiveness. Engqvist: “In stressful times, like periods of food shortage, this process can even lead to population extinction, since the investment in competition exceeds the value of the resources.”

“Extreme care is required when transferring insights from a simple evolutionary model to humans“, says Franjo Weissing from the University of Groningen. “Our article therefore does not say too much about competitiveness in humans. However, also in humans there is huge diversity in competitiveness, and individuals with highest competitive ability often seem least prudent in the exploitation of their resources. It is therefore tempting to speculate that the external stimulation of competitiveness by societal pressure, which is analogous to the stimulation of competitiveness by the female preferences in our model, can lead to such a wastage of resources that our future survival is threatened.”

Reference:
Baldauf, S.A., Engqvist, L. & Weissing, F.J. (2014): Diversifying evolution of competitiveness. Nature Communications, doi: 10.1038/ncomms6233

Media contacts:

Dr. Sebastian A. Baldauf
Institute for Evolutionary Biology and Ecology
University of Bonn
Tel. +49-(0)228-735749
E-Mail: sbaldauf@evolution.uni-bonn.de

Prof. Dr. Franz J. Weissing
Centre for Ecological and Evolutionary Studies
University of Groningen
Tel. +31-(0)50-3632131 or -3638669
E-Mail: f.j.weissing@rug.nl

Dr. Leif Engqvist
Abteilung Evolutionsbiologie
University of Bielefeld
Tel. +49-(0)521-1062822
E-Mail: leif.engqvist@uni-bielefeld.de

Johannes Seiler | idw - Informationsdienst Wissenschaft
Further information:
http://www.uni-bonn.de/

More articles from Life Sciences:

nachricht A novel socio-ecological approach helps identifying suitable wolf habitats
17.02.2017 | Universität Zürich

nachricht New, ultra-flexible probes form reliable, scar-free integration with the brain
16.02.2017 | University of Texas at Austin

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Breakthrough with a chain of gold atoms

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

Im Focus: DNA repair: a new letter in the cell alphabet

Results reveal how discoveries may be hidden in scientific “blind spots”

Cells need to repair damaged DNA in our genes to prevent the development of cancer and other diseases. Our cells therefore activate and send “repair-proteins”...

Im Focus: Dresdner scientists print tomorrow’s world

The Fraunhofer IWS Dresden and Technische Universität Dresden inaugurated their jointly operated Center for Additive Manufacturing Dresden (AMCD) with a festive ceremony on February 7, 2017. Scientists from various disciplines perform research on materials, additive manufacturing processes and innovative technologies, which build up components in a layer by layer process. This technology opens up new horizons for component design and combinations of functions. For example during fabrication, electrical conductors and sensors are already able to be additively manufactured into components. They provide information about stress conditions of a product during operation.

The 3D-printing technology, or additive manufacturing as it is often called, has long made the step out of scientific research laboratories into industrial...

Im Focus: Mimicking nature's cellular architectures via 3-D printing

Research offers new level of control over the structure of 3-D printed materials

Nature does amazing things with limited design materials. Grass, for example, can support its own weight, resist strong wind loads, and recover after being...

Im Focus: Three Magnetic States for Each Hole

Nanometer-scale magnetic perforated grids could create new possibilities for computing. Together with international colleagues, scientists from the Helmholtz Zentrum Dresden-Rossendorf (HZDR) have shown how a cobalt grid can be reliably programmed at room temperature. In addition they discovered that for every hole ("antidot") three magnetic states can be configured. The results have been published in the journal "Scientific Reports".

Physicist Dr. Rantej Bali from the HZDR, together with scientists from Singapore and Australia, designed a special grid structure in a thin layer of cobalt in...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Booth and panel discussion – The Lindau Nobel Laureate Meetings at the AAAS 2017 Annual Meeting

13.02.2017 | Event News

Complex Loading versus Hidden Reserves

10.02.2017 | Event News

International Conference on Crystal Growth in Freiburg

09.02.2017 | Event News

 
Latest News

Biocompatible 3-D tracking system has potential to improve robot-assisted surgery

17.02.2017 | Medical Engineering

Real-time MRI analysis powered by supercomputers

17.02.2017 | Medical Engineering

Antibiotic effective against drug-resistant bacteria in pediatric skin infections

17.02.2017 | Health and Medicine

VideoLinks
B2B-VideoLinks
More VideoLinks >>>