Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Evolution of Cellular Power Stations

18.05.2016

The protein OXA plays an important role in integrating protein molecules into mitochondria

Mitochondria are the power stations of human cells. They provide the energy needed for the cellular metabolism. But how did these power stations evolve, and how are they constructed?


Fluorescence microscopy image of the mitochondrial network (left, in green) and the corresponding light microscopy image (right) of a dividing yeast cell. Images: Nils Wiedemann, University of Freiburg

Researchers from the University of Freiburg studied the role of so-called oxidase assembly machinery, or OXA, in the development of the inner membrane of mitochondria and the energy supply of cells. Dr. Jan Höpker, Dr. Silke Oeljeklaus, Prof. Dr. Nikolaus Pfanner, Dr. Sebastian Stiller, Prof. Dr. Bettina Warscheid, Prof. Dr. Nils Wiedemann and their team of researchers have demonstrated that this protein complex is essential for the integration of certain proteins into the inner membrane of mitochondria – proteins that play a role in cellular respiration and other processes. The results of the scientists’ research have now been published in the journal Cell Metabolism.

Mitochondria originate from a bacterium, meaning they have their own DNA molecule in which the structure of several proteins is recorded. An OXA-like machinery already existed in the bacterial precursor of mitochondria and has been conserved throughout evolution. The proteins produced according to the mitochondrion's genetic material are integrated by the OXA into the inner mitochondrial membrane.

The genetic information of 99 percent of the proteins comprising mitochondria are stored in the cell’s nucleus, however. The cell produces these protein molecules in the cytoplasm, after which the TOM, or “Translocase of the Outer Membrane”, and the TIM, “Translocase of the Inner Membrane”, transport them across the outer and inner membranes into mitochondria. How many of these imported proteins are also integrated into the inner membrane by OXA was unclear until now.

The researchers from the University of Freiburg systematically searched for proteins integrated by OXA into the inner membrane after they had been imported via TOM and TIM. They used an analytical technique called quantitative mass spectrometry to identify mitochondrial inner membrane proteins which are reduced in cells without OXA. By tracing the integration of radioactively labelled proteins into the inner mitochondrial membrane, they were able to prove that OXA is necessary for this process.

The imported OXA-dependent proteins play important functions that range from cellular respiration, the exchange of metal ions, and biochemical reactions, to the integration of proteins enabling the transfer of metabolic products across the inner membrane.

When the integration or function of these respiratory proteins is blocked, this can cause mitochondrial-based neuromuscular diseases or cancer. The OXA-dependent integration of inner membrane proteins, which has been conserved throughout evolution, is thus fundamental for the formation of the mitochondrial inner membrane and for the energy supply of human cells.

Nikolaus Pfanner and Nils Wiedemann are leaders of research groups at the Institute for Biochemistry and Molecular Biology of the University of Freiburg. Sebastian Stiller is a researcher in Wiedemann’s lab, while Jan Höpker is a former member of Pfanner’s research group.

Bettina Warscheid is a professor at the Institute of Biology II of the University of Freiburg, and Silke Oeljeklaus is a researcher in Warscheid’s lab. Pfanner, Warscheid and Wiedemann are all members of the Cluster of Excellence BIOSS Centre for Biological Signalling Studies as well as the Spemann Graduate School of Biology and Medicine of the University of Freiburg.

Original publication:
Sebastian B. Stiller, Jan Höpker, Silke Oeljeklaus, Conny Schütze, Sandra G. Schrempp, Jens Vent-Schmidt, Susanne E. Horvath, Ann E. Frazier, Natalia Gebert, Martin van der Laan, Maria Bohnert, Bettina Warscheid, Nikolaus Pfanner, Nils Wiedemann (2016): Mitochondrial OXA Translocase Plays a Major Role in Biogenesis of Inner-Membrane Proteins. Cell Metabolism, DOI: http://dx.doi.org/10.1016/j.cmet.2016.04.005.


Contact:
Prof. Dr. Nils Wiedemann
Institute for Biochemistry and Molecular Biology
University of Freiburg
Phone: +49 761 203-5280
E-mail: nils.wiedemann@biochemie.uni-freiburg.de

Weitere Informationen:

https://www.pr.uni-freiburg.de/pm/2016/pm.2016-05-17.77-en?set_language=en

Rudolf-Werner Dreier | idw - Informationsdienst Wissenschaft

More articles from Life Sciences:

nachricht For a chimpanzee, one good turn deserves another
27.06.2017 | Max-Planck-Institut für Mathematik in den Naturwissenschaften (MPIMIS)

nachricht New method to rapidly map the 'social networks' of proteins
27.06.2017 | Salk Institute

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Can we see monkeys from space? Emerging technologies to map biodiversity

An international team of scientists has proposed a new multi-disciplinary approach in which an array of new technologies will allow us to map biodiversity and the risks that wildlife is facing at the scale of whole landscapes. The findings are published in Nature Ecology and Evolution. This international research is led by the Kunming Institute of Zoology from China, University of East Anglia, University of Leicester and the Leibniz Institute for Zoo and Wildlife Research.

Using a combination of satellite and ground data, the team proposes that it is now possible to map biodiversity with an accuracy that has not been previously...

Im Focus: Climate satellite: Tracking methane with robust laser technology

Heatwaves in the Arctic, longer periods of vegetation in Europe, severe floods in West Africa – starting in 2021, scientists want to explore the emissions of the greenhouse gas methane with the German-French satellite MERLIN. This is made possible by a new robust laser system of the Fraunhofer Institute for Laser Technology ILT in Aachen, which achieves unprecedented measurement accuracy.

Methane is primarily the result of the decomposition of organic matter. The gas has a 25 times greater warming potential than carbon dioxide, but is not as...

Im Focus: How protons move through a fuel cell

Hydrogen is regarded as the energy source of the future: It is produced with solar power and can be used to generate heat and electricity in fuel cells. Empa researchers have now succeeded in decoding the movement of hydrogen ions in crystals – a key step towards more efficient energy conversion in the hydrogen industry of tomorrow.

As charge carriers, electrons and ions play the leading role in electrochemical energy storage devices and converters such as batteries and fuel cells. Proton...

Im Focus: A unique data centre for cosmological simulations

Scientists from the Excellence Cluster Universe at the Ludwig-Maximilians-Universität Munich have establised "Cosmowebportal", a unique data centre for cosmological simulations located at the Leibniz Supercomputing Centre (LRZ) of the Bavarian Academy of Sciences. The complete results of a series of large hydrodynamical cosmological simulations are available, with data volumes typically exceeding several hundred terabytes. Scientists worldwide can interactively explore these complex simulations via a web interface and directly access the results.

With current telescopes, scientists can observe our Universe’s galaxies and galaxy clusters and their distribution along an invisible cosmic web. From the...

Im Focus: Scientists develop molecular thermometer for contactless measurement using infrared light

Temperature measurements possible even on the smallest scale / Molecular ruby for use in material sciences, biology, and medicine

Chemists at Johannes Gutenberg University Mainz (JGU) in cooperation with researchers of the German Federal Institute for Materials Research and Testing (BAM)...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Plants are networkers

19.06.2017 | Event News

Digital Survival Training for Executives

13.06.2017 | Event News

Global Learning Council Summit 2017

13.06.2017 | Event News

 
Latest News

Touch Displays WAY-AX and WAY-DX by WayCon

27.06.2017 | Power and Electrical Engineering

Drones that drive

27.06.2017 | Information Technology

Ultra-compact phase modulators based on graphene plasmons

27.06.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>