Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Even plants can be stressed

03.09.2015

Environmental conditions such as drought or salinity can be detrimental to crop performance and yield. Salt is one of the major factors that negatively impact on plant growth and it is estimated that 20% of the total, and 33% of irrigated, agricultural lands are afflicted by high salt worldwide. It is therefore of great agricultural importance to find genes and mechanisms that can improve plant growth under such conditions. The team of Dr. Staffan Persson has identified a protein family that helps plants to grow on salt, and outlined a mechanism for how these proteins aid the plants to produce their biomass under salt stress conditions.

Environmental conditions such as drought, cold or salinity can be detrimental to crop performance and yield. Salt is one of the major factors that negatively impact on plant growth and it is estimated that 20% of the total, and 33% of irrigated, agricultural lands are afflicted by high salt worldwide.


Effect of salt stress on plants (Left: Plants with CC proteins (wild type) grow better on salt than those missing them (mutant); Right: A view inside he cell under salt stress (green: CC proteins).

It is therefore of great agricultural importance to find genes and mechanisms that can improve plant growth under such conditions. The team of Dr. Staffan Persson, group leader at the Max Planck Institute of Molecular Plant Physiology until January 2015 and now Professor at the University of Melbourne in Australia, has identified a protein family that helps plants to grow on salt, and outlined a mechanism for how these proteins aid the plants to produce their biomass under salt stress conditions.

Plants need to make more and bigger cells if they want to grow and develop. Unlike animal cells, plant cells are surrounded by a cellular exoskeleton, called cell walls which direct plant growth and protect the plant against diseases.

Importantly, most of the plants biomass is made up of the cell wall with cellulose being the major component. Hence, plant growth largely depend on the ability of plants to produce cell walls and cellulose, also under stress conditions, and it is therefore no surprise that research on cell wall biosynthesis is of high priority.

Previous studies of Dr. Staffan Persson’s research group and others have shown that the cellulose producing protein complex, called cellulose synthase, interacts with, and is guided by, an intracellular polymer structure, called microtubules. This interaction is important for shape and stability of plant cells.

The current research revealed that a previously unknown family of proteins supports the cellulose synthase machinery under salt stress conditions, and was named “Companions of Cellulose synthase (CC). “We show that these proteins, which we called CC proteins, are part of the cellulose synthase complex during cellulose synthesis”, said Staffan Persson.

Effect of salt stress on plants
Left panel (plants grown on salt): Plants with CC proteins (wild type) grow better on salt containing media than mutant plants, missing the CC genes
Right panel (inside the cell): A view inside he cell under salt stress; plants with CC proteins (wild type) show functional cellulose synthase complexes in the plasma membrane; Plants without CC proteins (mutant) show internalized cellulose synthase complexes which are not active anymore.
CC-proteins shown in green, cellulose synthase complexes are shown in red

The researchers discovered that the CC gene activity was increased when plants were exposed to high salt concentrations. Thus, the research team hypothesized an involvement of these proteins in salt tolerance of plants.

“To prove this hypothesis we deleted multiple genes of the CC gene family in the model plant Arabidopsis thaliana (thale cress), and grew the plants on salt-containing media. These mutated plants performed much worse than the wild-type plants”, explains Christopher Kesten, PhD student in Dr. Persson’s research group, and co-first author of this study.

„In an additional step, we made fluorescent versions of the CC proteins and observed, with the help of a special microscope, where and how they function. It was quite a surprise to see that they were able to maintain the organization of microtubules under salt stress. This function helped the plants to maintain cellulose synthesis during the stress“, adds Dr. Anne Endler, also co-first author of this study.

The research group demonstrated that while the control plants could maintain their microtubules intact, the plants lacking the CC activity were unable to do so. This loss in microtubule function led to a failure in maintaining cellulose synthesis, which explained the reduction in plant growth on salt. These results therefore provide a mechanism for how the CC proteins aid plant biomass production under salt stress.

The group’s discovery of the CC proteins could promote future generation of salt tolerant crop plants. A major global agricultural challenge involves an increase in food production to sustain a growing population. By 2050 it is estimated that we need to increase our production of food with 70% to feed an additional 2.3 billion people. Salinity is a major limiting factor for this goal as more than 50% of the arable land may be salt afflicted by the year 2050.

Dr. Staffan Persson was group leader at the Max Planck Institute of Molecular Plant Physiology until January 2015. He is now at the „School of Biosciences” at the University of Melbourne in Australia.

Contact:
Dr. Staffan Persson
Staffan.persson@unimelb.edu.au

Dr.Ulrike Glaubitz
Public Relations
Email: Glaubitz@mpimp-golm.mpg.de

Original publication
Anne Endler, Christopher Kesten, René Schneider, Yi Zhang, Alexander Ivakov, Anja Fröhlich, Norma Funke, Staffan Persson
A mechanism for sustained cellulose synthesis during salt stress
Cell (2015), 3.09.2015, http://dx.doi.org/10.1016/j.cell.2015.08.028

Weitere Informationen:

http://www.mpimp-golm.mpg.de

Ursula Ross-Stitt | Max-Planck-Institut für Molekulare Pflanzenphysiologie

More articles from Life Sciences:

nachricht Scientists unlock ability to generate new sensory hair cells
22.02.2017 | Brigham and Women's Hospital

nachricht New insights into the information processing of motor neurons
22.02.2017 | Max Planck Florida Institute for Neuroscience

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Breakthrough with a chain of gold atoms

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

Im Focus: DNA repair: a new letter in the cell alphabet

Results reveal how discoveries may be hidden in scientific “blind spots”

Cells need to repair damaged DNA in our genes to prevent the development of cancer and other diseases. Our cells therefore activate and send “repair-proteins”...

Im Focus: Dresdner scientists print tomorrow’s world

The Fraunhofer IWS Dresden and Technische Universität Dresden inaugurated their jointly operated Center for Additive Manufacturing Dresden (AMCD) with a festive ceremony on February 7, 2017. Scientists from various disciplines perform research on materials, additive manufacturing processes and innovative technologies, which build up components in a layer by layer process. This technology opens up new horizons for component design and combinations of functions. For example during fabrication, electrical conductors and sensors are already able to be additively manufactured into components. They provide information about stress conditions of a product during operation.

The 3D-printing technology, or additive manufacturing as it is often called, has long made the step out of scientific research laboratories into industrial...

Im Focus: Mimicking nature's cellular architectures via 3-D printing

Research offers new level of control over the structure of 3-D printed materials

Nature does amazing things with limited design materials. Grass, for example, can support its own weight, resist strong wind loads, and recover after being...

Im Focus: Three Magnetic States for Each Hole

Nanometer-scale magnetic perforated grids could create new possibilities for computing. Together with international colleagues, scientists from the Helmholtz Zentrum Dresden-Rossendorf (HZDR) have shown how a cobalt grid can be reliably programmed at room temperature. In addition they discovered that for every hole ("antidot") three magnetic states can be configured. The results have been published in the journal "Scientific Reports".

Physicist Dr. Rantej Bali from the HZDR, together with scientists from Singapore and Australia, designed a special grid structure in a thin layer of cobalt in...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Booth and panel discussion – The Lindau Nobel Laureate Meetings at the AAAS 2017 Annual Meeting

13.02.2017 | Event News

Complex Loading versus Hidden Reserves

10.02.2017 | Event News

International Conference on Crystal Growth in Freiburg

09.02.2017 | Event News

 
Latest News

Microhotplates for a smart gas sensor

22.02.2017 | Power and Electrical Engineering

Scientists unlock ability to generate new sensory hair cells

22.02.2017 | Life Sciences

Prediction: More gas-giants will be found orbiting Sun-like stars

22.02.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>