Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

New EU project CORONET: Novel interfaces between brain and computer

01.12.2010
Interfaces between the brain and electrical circuits in technical devices or computers open new perspectives for basic research and medical application, e.g., for therapeutic brain stimulation and neuroprosthetics.

The new EU project CORONET will develop the technological and theoretical foundations for such future “bio-hybrid” interfaces between biological and artificial nervous tissues.

The European Commission supports CORONET with 2.7 Mio. € from the 7th Framework Program. Within the category “Brain-inspired Computing”, CORONET received the best rating out of all 39 concurring project proposals.

The key idea of CORONET is to work with, not against, the complex spontaneous activity of living nervous tissues. The project will first "gently steer" the spontaneous activity into a desired direction by applying continuous, weak electrical stimulation. Then, the nervous tissue will be coupled to artificial, electronic networks that show a behavior as complex as that of the living brain. By aid of this coupling, the scientists will try to "read out" natural, spontaneously arising activity states in the nervous tissue.

In a first step, computer simulations will serve as artificial neural networks. In a second step, the researchers will apply custom-built advanced integrated circuits that operate based on principles of the brain (“neuromorphic VLSI"). The final goal of the project is to seamlessly interface "silicon-" and living nervous tissues.

The project involves senior scientists from Magdeburg, Dresden, Trieste, Rome, Haifa, and Barcelona and is led by Prof. Jochen Braun (Otto-von-Guericke Universität Magdeburg). It builds on previous research performed in the Bernstein Group Magdeburg, coordinated also by Prof. Braun and funded by the German Federal Ministry of Education and Research (BMBF).

Contact Information:
Prof. Jochen Braun
Institut für Biologie
Otto von Guericke University Magdeburg
Leipziger Str. 44
39120 Magdeburg
Germany
Phone: +49 391 67 55 050
jochen.braun@ovgu.de

Dr. Simone Cardoso de Oliveira | idw
Further information:
http://kobi.nat.uni-magdeburg.de
http://www.bgcn.ovgu.de/

More articles from Life Sciences:

nachricht New type of photosynthesis discovered
17.06.2018 | Imperial College London

nachricht New ID pictures of conducting polymers discover a surprise ABBA fan
17.06.2018 | University of Warwick

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: AchemAsia 2019 will take place in Shanghai

Moving into its fourth decade, AchemAsia is setting out for new horizons: The International Expo and Innovation Forum for Sustainable Chemical Production will take place from 21-23 May 2019 in Shanghai, China. With an updated event profile, the eleventh edition focusses on topics that are especially relevant for the Chinese process industry, putting a strong emphasis on sustainability and innovation.

Founded in 1989 as a spin-off of ACHEMA to cater to the needs of China’s then developing industry, AchemAsia has since grown into a platform where the latest...

Im Focus: First real-time test of Li-Fi utilization for the industrial Internet of Things

The BMBF-funded OWICELLS project was successfully completed with a final presentation at the BMW plant in Munich. The presentation demonstrated a Li-Fi communication with a mobile robot, while the robot carried out usual production processes (welding, moving and testing parts) in a 5x5m² production cell. The robust, optical wireless transmission is based on spatial diversity; in other words, data is sent and received simultaneously by several LEDs and several photodiodes. The system can transmit data at more than 100 Mbit/s and five milliseconds latency.

Modern production technologies in the automobile industry must become more flexible in order to fulfil individual customer requirements.

Im Focus: Sharp images with flexible fibers

An international team of scientists has discovered a new way to transfer image information through multimodal fibers with almost no distortion - even if the fiber is bent. The results of the study, to which scientist from the Leibniz-Institute of Photonic Technology Jena (Leibniz IPHT) contributed, were published on 6thJune in the highly-cited journal Physical Review Letters.

Endoscopes allow doctors to see into a patient’s body like through a keyhole. Typically, the images are transmitted via a bundle of several hundreds of optical...

Im Focus: Photoexcited graphene puzzle solved

A boost for graphene-based light detectors

Light detection and control lies at the heart of many modern device applications, such as smartphone cameras. Using graphene as a light-sensitive material for...

Im Focus: Water is not the same as water

Water molecules exist in two different forms with almost identical physical properties. For the first time, researchers have succeeded in separating the two forms to show that they can exhibit different chemical reactivities. These results were reported by researchers from the University of Basel and their colleagues in Hamburg in the scientific journal Nature Communications.

From a chemical perspective, water is a molecule in which a single oxygen atom is linked to two hydrogen atoms. It is less well known that water exists in two...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

Munich conference on asteroid detection, tracking and defense

13.06.2018 | Event News

2nd International Baltic Earth Conference in Denmark: “The Baltic Sea region in Transition”

08.06.2018 | Event News

ISEKI_Food 2018: Conference with Holistic View of Food Production

05.06.2018 | Event News

 
Latest News

A sprinkle of platinum nanoparticles onto graphene makes brain probes more sensitive

15.06.2018 | Materials Sciences

100 % Organic Farming in Bhutan – a Realistic Target?

15.06.2018 | Ecology, The Environment and Conservation

Perovskite-silicon solar cell research collaboration hits 25.2% efficiency

15.06.2018 | Power and Electrical Engineering

VideoLinks
Science & Research
Overview of more VideoLinks >>>