Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:


Epilepsy: When the neuron's doorman allows too much in


In epilepsy, nerve cells or neurons lose their usual rhythm, and ion channels, which have a decisive influence on their excitability, are involved. A team of researchers under the direction of the University of Bonn has now discovered a new mechanism for influencing ion channels in epilepsy. They found that spermine inside neurons dampens the neurons excitability. In epilepsy, spermine levels decrease, causing hyperexcitability. The researchers hope that their findings can be exploited to develop new therapies for epilepsies. They are reporting their findings in "The Journal of Neuroscience".

In Germany, approximately one out of a hundred people suffer from epilepsy and one out of twenty suffer a seizure at least once during their lifetime. Seizures occur when many nerve cells in the brain fire in synchrony.

This is how a neuron from the hippocampus of a rat looks like. The cell and it's extenive processes are visulaised using a fluorescent dye, filled via a glass pipette.

(c) Photo: AG Heinz Beck/Uni Bonn

Scientists are searching for the causes leading to this simultaneous excitation of brain cells. Researchers at the Department of Epileptology, the Institute for Neuropathology and the Institute for Molecular Psychiatry, together with the Caesar Research Center and the Hebrew University (Israel) have discovered a mechanism which previously was not thought to be involved in the development of epilepsy.

"Doormen" determine how many sodium ions are allowed in

Neurons integrate many inputs together to then determine an appropriate output, and sodium channels play a key role in both processes. "They play an important role in the excitation of nerve cell axons and signal transfer between various cells," says Prof. Dr. Heinz Beck, who conducts research in experimental epileptology at the Department of Epileptology, at the Life & Brain center and the German Center for Neurodegenerative Diseases (DZNE).

Like a type of door, sodium channels allow sodium ions to flow into nerve cells through tiny pores. They consist of large protein complexes located in the membranes of nerve cells. The scientists found a large increase in a certain sodium influx which significantly increased the excitability of cells in the epileptic animal.

For this reason, scientists working with Prof. Beck initially compared the sodium channel proteins from the brains of epileptic rats to those of healthy animals. "However, this did not reveal any increased formation of sodium channel proteins, which could have explained the overexcitation of nerve cells." reports the epilepsy researcher.

After a long search, the team of researchers found a completely different group of substances: the polyamines. Spermine belongs to this group; it is produced in cells and plugs the pores of the sodium channels from within. like a doorman. In this case, the influx of sodium ions is blocked and the excitation of the nerve cells is reduced.

Overexcitation is attenuated through administration of spermine

The scientists investigated how much of the seizure-inhibiting substance is present in the nerve cells of rats suffering from epilepsy and compared the values to those of healthy animals. "The amount of spermine in the cells of the hippocampus was significantly reduced in diseased animals as compared to the healthy animals," report the lead authors Dr. Michel Royeck and Dr. Thoralf Optiz from Dr. Beck's team. “Furthermore, the reduced spermine in the nerve cell led to increased excitability; the cells were more sensitive to input and generated more output” said fellow lead author Dr. Tony Kelly. The investigators tested this important finding, compensating for the deficiency in the nerve cells of epileptic rats by adding spermine back into the cell. As a result, the increase in sodium currents was reversed and the excitability of the neuron returned to normal.

The lower level of spermine in the epileptic rat’s brain was evidently caused by an upregulation of spermidine/spermine-N(1)-acetyltransferase. This enzyme breaks down the spermine which is important in the control of sodium channels. According to the scientists, this result could be a potential starting point for novel epilepsy therapies. "If a substance was available to reduce the activity of acetyltransferase back to normal levels, the lack of spermine and thus the symptoms of epilepsy could be mitigated," speculates Prof. Beck. However, concrete therapeutic applications are still a long way off.

Publication: Downregulation of Spermine Augments Dendritic Persistent Sodium Currents and Synaptic Integration after Status Epilepticus, The Journal of Neuroscience, DOI: 10.1523/JNEUROSCI.0493-15.2015

Media contact information:

Prof. Dr. Heinz Beck
University Hospital for Epileptology, Life & Brain Center,
German Center for Neurodegenerative Diseases
Spokesperson for Collaborative Research Center 1089
Tel. ++49-228-6885215

Dr. Tony Kelly
University Hospital for Epileptology, Life & Brain Center,
Tel. ++49-228-6885276

Johannes Seiler | idw - Informationsdienst Wissenschaft
Further information:

More articles from Life Sciences:

nachricht Strong, steady forces at work during cell division
20.10.2016 | University of Massachusetts at Amherst

nachricht Disturbance wanted
20.10.2016 | Max Delbrück Center for Molecular Medicine in the Helmholtz Association

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: New 3-D wiring technique brings scalable quantum computers closer to reality

Researchers from the Institute for Quantum Computing (IQC) at the University of Waterloo led the development of a new extensible wiring technique capable of controlling superconducting quantum bits, representing a significant step towards to the realization of a scalable quantum computer.

"The quantum socket is a wiring method that uses three-dimensional wires based on spring-loaded pins to address individual qubits," said Jeremy Béjanin, a PhD...

Im Focus: Scientists develop a semiconductor nanocomposite material that moves in response to light

In a paper in Scientific Reports, a research team at Worcester Polytechnic Institute describes a novel light-activated phenomenon that could become the basis for applications as diverse as microscopic robotic grippers and more efficient solar cells.

A research team at Worcester Polytechnic Institute (WPI) has developed a revolutionary, light-activated semiconductor nanocomposite material that can be used...

Im Focus: Diamonds aren't forever: Sandia, Harvard team create first quantum computer bridge

By forcefully embedding two silicon atoms in a diamond matrix, Sandia researchers have demonstrated for the first time on a single chip all the components needed to create a quantum bridge to link quantum computers together.

"People have already built small quantum computers," says Sandia researcher Ryan Camacho. "Maybe the first useful one won't be a single giant quantum computer...

Im Focus: New Products - Highlights of COMPAMED 2016

COMPAMED has become the leading international marketplace for suppliers of medical manufacturing. The trade fair, which takes place every November and is co-located to MEDICA in Dusseldorf, has been steadily growing over the past years and shows that medical technology remains a rapidly growing market.

In 2016, the joint pavilion by the IVAM Microtechnology Network, the Product Market “High-tech for Medical Devices”, will be located in Hall 8a again and will...

Im Focus: Ultra-thin ferroelectric material for next-generation electronics

'Ferroelectric' materials can switch between different states of electrical polarization in response to an external electric field. This flexibility means they show promise for many applications, for example in electronic devices and computer memory. Current ferroelectric materials are highly valued for their thermal and chemical stability and rapid electro-mechanical responses, but creating a material that is scalable down to the tiny sizes needed for technologies like silicon-based semiconductors (Si-based CMOS) has proven challenging.

Now, Hiroshi Funakubo and co-workers at the Tokyo Institute of Technology, in collaboration with researchers across Japan, have conducted experiments to...

All Focus news of the innovation-report >>>



Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

Agricultural Trade Developments and Potentials in Central Asia and the South Caucasus

14.10.2016 | Event News

World Health Summit – Day Three: A Call to Action

12.10.2016 | Event News

Latest News

Innovative technique for shaping light could solve bandwidth crunch

20.10.2016 | Physics and Astronomy

Finding the lightest superdeformed triaxial atomic nucleus

20.10.2016 | Physics and Astronomy

NASA's MAVEN mission observes ups and downs of water escape from Mars

20.10.2016 | Physics and Astronomy

More VideoLinks >>>