Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Einstein’s Theory of Relativity Explains Fundamental Properties of Gold

30.10.2015

Heidelberg chemists compare gold, silver and copper atoms in compounds with otherwise identical structures

Some fundamental properties of the coinage metal elements gold, silver and copper, such as chemical behaviour or colours, are already predetermined in their atoms. The unique properties of gold can be largely explained by Albert Einstein’s theory of relativity.


Foto: Matthias W. Hussong, Organisch-Chemisches Institut

Lösungen der drei Metallcarben-Komplexe von Kupfer, Silber und Gold (v.l.n.r.)

Chemists from Heidelberg University have been able to demonstrate this through their investigations of gold, silver and copper carbenes. They examined only single atoms of each metal in order to compare the three elements. The results of this research, led by Prof. Dr. Bernd Straub, were published in both the German and international editions of the journal “Angewandte Chemie” for applied and fundamental chemistry.

The properties of chemical elements are recurring periodically, since related elements possess the same number of electrons in the relevant outer shell and differ only due to additional inner electron shells. Copper, silver and gold belong to such a group of related elements.

“Comparing copper metal, silver metal and gold metal with their numerous neighbouring metal atoms has never been a problem, as pure metals have been around for millennia,” explains Prof. Straub, a lecturer and researcher at the Institute of Organic Chemistry. However, he and his team were able to ascertain the differences of single atoms – in an otherwise identical molecule with which the metal atoms interact very strongly with a carbon atom via double bonds.

The Heidelberg scientists started their investigations with gold carbenes, which comprise a usually unstable – because highly reactive – double bond between carbon and gold. However, using a chemical “trick”, Prof. Straub and his team found a way to obtain and to isolate a stable gold carbene complex for research purposes. In further steps they managed to prepare and characterise a copper carbene and a silver carbene with otherwise identical structure, even though both these compounds were much more sensitive and unstable than the gold carbene.

Nevertheless, these complexes enabled the scientists to make a detailed comparison of the three elements of the coinage metal group – copper, silver and gold – on the scale of a molecule. Through the crystallisation of the particularly unstable silver carbene, they were able to determine the bond length between silver and the doubly-bonded carbon via an x-ray structural analysis. They then compared this with the shorter, stronger bonding between gold and carbon.

From their observations the researchers conclude that the properties of gold are fundamentally determined by “relativistic effects”. These effects come into play in physics when a phenomenon can no longer be described as “classical”. In chemistry this applies to the properties of certain elements.

The relativistic effects derive from Albert Einstein‘s theory of relativity with the well-known formula E = mc2 by which Einstein established a connection between energy, mass and speed of light. “Of the stable elements, the predicted relativistic effects are most noticeable with gold,” says Prof. Straub. A well-known example is the striking difference in colour between yellow gold metal and colorless silver metal.

Bernd Straub explains that, due to the attraction of the 79-fold positively charged gold nucleus, negatively charged gold electrons achieve such high velocities close to the speed of light (c) that additional motion energy (E) cannot substantially increase their speed. Instead, these electrons increase their mass (m). This effect is seen in the outermost electron shell, which is active and thus responsible for chemical behaviour, colours and properties of coinage metals.

In the case of gold, this leads to a strengthening of its bonds. Gold compounds thereby have a better chance, for example, of activating a triple bond between two carbon atoms. The comparison between the coinage metal elements gold, silver and copper with the double-bond carbon in each case showed that the atomic behaviour of gold is more similar to copper than to silver, although silver is its direct neighbour in the periodic system.

The research findings of the Heidelberg chemists confirm that Einstein‘s theory of relativity does not just play a crucial role in astronomy and space travel with their huge distances. Prof. Straub also emphasises its significance in the world of electrons, atoms and molecules.

Original publication:
M.W. Hussong, W.T. Hoffmeister, F. Rominger, B.F. Straub: Copper and Silver Carbene Complexes without Heteroatom-Stabilization: Structure, Spectroscopy, and Relativistic Effects. Angewandte Chemie International Edition 2015, 54, 10331-10335, doi: 10.1002/anie.201504117

Contact:
Prof. Dr. Bernd F. Straub
Institute of Organic Chemistry
Phone +49 6221 54-6239
straub@oci.uni-heidelberg.de

Communications and Marketing
Press Office, phone +49 6221 54-2311
presse@rektorat.uni-heidelberg.de

Weitere Informationen:

http://www.uni-heidelberg.de/fakultaeten/chemgeo/oci/akstraub/index.html

Marietta Fuhrmann-Koch | idw - Informationsdienst Wissenschaft

Further reports about: Angewandte Chemie COPPER Electrons Relativity properties single atoms speed of light

More articles from Life Sciences:

nachricht Molecular evolution: How the building blocks of life may form in space
26.04.2018 | American Institute of Physics

nachricht Multifunctional bacterial microswimmer able to deliver cargo and destroy itself
26.04.2018 | Max-Planck-Institut für Intelligente Systeme

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Why we need erasable MRI scans

New technology could allow an MRI contrast agent to 'blink off,' helping doctors diagnose disease

Magnetic resonance imaging, or MRI, is a widely used medical tool for taking pictures of the insides of our body. One way to make MRI scans easier to read is...

Im Focus: BAM@Hannover Messe: innovative 3D printing method for space flight

At the Hannover Messe 2018, the Bundesanstalt für Materialforschung und-prüfung (BAM) will show how, in the future, astronauts could produce their own tools or spare parts in zero gravity using 3D printing. This will reduce, weight and transport costs for space missions. Visitors can experience the innovative additive manufacturing process live at the fair.

Powder-based additive manufacturing in zero gravity is the name of the project in which a component is produced by applying metallic powder layers and then...

Im Focus: Molecules Brilliantly Illuminated

Physicists at the Laboratory for Attosecond Physics, which is jointly run by Ludwig-Maximilians-Universität and the Max Planck Institute of Quantum Optics, have developed a high-power laser system that generates ultrashort pulses of light covering a large share of the mid-infrared spectrum. The researchers envisage a wide range of applications for the technology – in the early diagnosis of cancer, for instance.

Molecules are the building blocks of life. Like all other organisms, we are made of them. They control our biorhythm, and they can also reflect our state of...

Im Focus: Spider silk key to new bone-fixing composite

University of Connecticut researchers have created a biodegradable composite made of silk fibers that can be used to repair broken load-bearing bones without the complications sometimes presented by other materials.

Repairing major load-bearing bones such as those in the leg can be a long and uncomfortable process.

Im Focus: Writing and deleting magnets with lasers

Study published in the journal ACS Applied Materials & Interfaces is the outcome of an international effort that included teams from Dresden and Berlin in Germany, and the US.

Scientists at the Helmholtz-Zentrum Dresden-Rossendorf (HZDR) together with colleagues from the Helmholtz-Zentrum Berlin (HZB) and the University of Virginia...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

Invitation to the upcoming "Current Topics in Bioinformatics: Big Data in Genomics and Medicine"

13.04.2018 | Event News

Unique scope of UV LED technologies and applications presented in Berlin: ICULTA-2018

12.04.2018 | Event News

IWOLIA: A conference bringing together German Industrie 4.0 and French Industrie du Futur

09.04.2018 | Event News

 
Latest News

World's smallest optical implantable biodevice

26.04.2018 | Power and Electrical Engineering

Molecular evolution: How the building blocks of life may form in space

26.04.2018 | Life Sciences

First Li-Fi-product with technology from Fraunhofer HHI launched in Japan

26.04.2018 | Power and Electrical Engineering

VideoLinks
Science & Research
Overview of more VideoLinks >>>