Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Effective Cesium Radioisotope Removal

23.05.2014

Novel vanadosilicate is potential decontamination agent for cesium-tainted water

The Fukushima reactor disaster has been the most recent incident to introduce the public to the concept of “cesium 137”. In the journal Angewandte Chemie, Korean researchers have now introduced a new vanadosilicate that can remove cesium from contaminated coolant water, liquid nuclear waste, and contaminated ground- and seawater more effectively than conventional sorbents.


Cs-137 is among the most dangerous radioactive nuclides. It has a half-life of 30 years, so contaminated areas remain polluted for a long time. The high solubility of cesium salts in water facilitates its dispersal in the environment and its uptake by plants. If humans ingest this contaminated food, the body cannot differentiate the cesium from potassium, so the toxin is stored in muscle tissue. Larger amounts can cause severe radiation sickness; smaller amounts can cause diseases like cancer.

The removal of Cs-137 from contaminated ground- and seawater, as well as liquid nuclear waste from reprocessing and nuclear energy plants is correspondingly critical for public health. The problem is the very high relative concentrations of competing cations like sodium, calcium, magnesium, and potassium ions—which make necessary a highly effective and selective cesium trap. A wide variety of inorganic materials have been developed, although there has been no substantial progress in the last 20 years. To date, titanosilicates have worked best, and these were put into use after the Fukushima reactor disaster.

Kyung Byung Yoon and a team from Sogang University in Seoul, South Korea have now developed a new material named as “Sogang University-45” (or SGU-45 for short) that very effectively binds and immobilizes cesium from groundwater, seawater, and liquid nuclear waste. Under the test conditions used, in concentrations of 10 ppb to 100 ppm, SGU-45 was shown to be superior to all previous materials with regard to selectivity, capacity, and rate of absorption. Strikingly, unlike other materials, the selectivity of K-SGU-4, the variant loaded with potassium ions, to cesium increases as the cesium concentration decreases.

SGU-45 is a special, microporous vanadosilicate with vanadium ions in the 4+ and 5+ oxidation states. K-SGU-45 was best suited for the removal of cesium from contaminated groundwater and seawater, as well as strongly acidic or basic nuclear waste. The cesium ions absorbed replace the potassium ions in K-SGU-45. The framework of SGU-45 already carries non-exchangeable cesium ions which are 16-coordinate, meaning that they have 16 neighboring atoms bonded to cesium. This observation is of academic interest because this is the highest coordination number (the number of nearest neighbors in a crystal lattice or complex) yet observed in chemistry.

About the Author

Dr. Kyung Byung Yoon is Professor of Chemistry at Sogang University, Seoul, Korea. He is also the Director of the Korea Center for Artificial Photosynthesis. He has been working in the area of zeolite research for the last 30 years. He is the recipient of the Korea Science Award and the Academic Award from the National Academy of Science, Korea.

Author: Kyung Byung Yoon, Sogang University, Seoul (Rep. Korea), http://hompi.sogang.ac.kr/zeolite/eyoon.htm

Title: A Novel Vanadosilicate with Hexadeca-Coordinated Cs+ Ions as a Highly Effective Cs+ Remover

Angewandte Chemie International Edition, Permalink to the article: http://dx.doi.org/10.1002/anie.201402778

Dr. Kyung Byung Yoon | Angewandte Chemie

Further reports about: Fukushima cesium concentration concentrations ions materials potassium reactor zeolite

More articles from Life Sciences:

nachricht Building a better battery
29.06.2016 | Texas A&M University

nachricht New way out: Researchers show how stem cells exit bloodstream
29.06.2016 | North Carolina State University

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Optical lenses, hardly larger than a human hair

3D printing enables the smalles complex micro-objectives

3D printing revolutionized the manufacturing of complex shapes in the last few years. Using additive depositing of materials, where individual dots or lines...

Im Focus: Flexible OLED applications arrive

R2D2, a joint project to analyze and development high-TRL processes and technologies for manufacture of flexible organic light-emitting diodes (OLEDs) funded by the German Federal Ministry of Education and Research (BMBF) has been successfully completed.

In contrast to point light sources like LEDs made of inorganic semiconductor crystals, organic light-emitting diodes (OLEDs) are light-emitting surfaces. Their...

Im Focus: Unexpected flexibility found in odorant molecules

High resolution rotational spectroscopy reveals an unprecedented number of conformations of an odorant molecule – a new world record!

In a recent publication in the journal Physical Chemistry Chemical Physics, researchers from the Max Planck Institute for the Structure and Dynamics of Matter...

Im Focus: 3-D printing produces cartilage from strands of bioink

Strands of cow cartilage substitute for ink in a 3D bioprinting process that may one day create cartilage patches for worn out joints, according to a team of engineers. "Our goal is to create tissue that can be used to replace large amounts of worn out tissue or design patches," said Ibrahim T. Ozbolat, associate professor of engineering science and mechanics. "Those who have osteoarthritis in their joints suffer a lot. We need a new alternative treatment for this."

Cartilage is a good tissue to target for scale-up bioprinting because it is made up of only one cell type and has no blood vessels within the tissue. It is...

Im Focus: First experimental quantum simulation of particle physics phenomena

Physicists in Innsbruck have realized the first quantum simulation of lattice gauge theories, building a bridge between high-energy theory and atomic physics. In the journal Nature, Rainer Blatt‘s and Peter Zoller’s research teams describe how they simulated the creation of elementary particle pairs out of the vacuum by using a quantum computer.

Elementary particles are the fundamental buildings blocks of matter, and their properties are described by the Standard Model of particle physics. The...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

International Conference ‘GEO BON’ Wants to Close Knowledge Gaps in Global Biodiversity

28.06.2016 | Event News

ERES 2016: The largest conference in the European real estate industry

09.06.2016 | Event News

Networking 4.0: International Laser Technology Congress AKL’16 Shows New Ways of Cooperations

24.05.2016 | Event News

 
Latest News

Building a better battery

29.06.2016 | Life Sciences

New way out: Researchers show how stem cells exit bloodstream

29.06.2016 | Life Sciences

Crucial peatlands carbon-sink vulnerable to rising sea levels

29.06.2016 | Earth Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>