Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Effective Cesium Radioisotope Removal

23.05.2014

Novel vanadosilicate is potential decontamination agent for cesium-tainted water

The Fukushima reactor disaster has been the most recent incident to introduce the public to the concept of “cesium 137”. In the journal Angewandte Chemie, Korean researchers have now introduced a new vanadosilicate that can remove cesium from contaminated coolant water, liquid nuclear waste, and contaminated ground- and seawater more effectively than conventional sorbents.


Cs-137 is among the most dangerous radioactive nuclides. It has a half-life of 30 years, so contaminated areas remain polluted for a long time. The high solubility of cesium salts in water facilitates its dispersal in the environment and its uptake by plants. If humans ingest this contaminated food, the body cannot differentiate the cesium from potassium, so the toxin is stored in muscle tissue. Larger amounts can cause severe radiation sickness; smaller amounts can cause diseases like cancer.

The removal of Cs-137 from contaminated ground- and seawater, as well as liquid nuclear waste from reprocessing and nuclear energy plants is correspondingly critical for public health. The problem is the very high relative concentrations of competing cations like sodium, calcium, magnesium, and potassium ions—which make necessary a highly effective and selective cesium trap. A wide variety of inorganic materials have been developed, although there has been no substantial progress in the last 20 years. To date, titanosilicates have worked best, and these were put into use after the Fukushima reactor disaster.

Kyung Byung Yoon and a team from Sogang University in Seoul, South Korea have now developed a new material named as “Sogang University-45” (or SGU-45 for short) that very effectively binds and immobilizes cesium from groundwater, seawater, and liquid nuclear waste. Under the test conditions used, in concentrations of 10 ppb to 100 ppm, SGU-45 was shown to be superior to all previous materials with regard to selectivity, capacity, and rate of absorption. Strikingly, unlike other materials, the selectivity of K-SGU-4, the variant loaded with potassium ions, to cesium increases as the cesium concentration decreases.

SGU-45 is a special, microporous vanadosilicate with vanadium ions in the 4+ and 5+ oxidation states. K-SGU-45 was best suited for the removal of cesium from contaminated groundwater and seawater, as well as strongly acidic or basic nuclear waste. The cesium ions absorbed replace the potassium ions in K-SGU-45. The framework of SGU-45 already carries non-exchangeable cesium ions which are 16-coordinate, meaning that they have 16 neighboring atoms bonded to cesium. This observation is of academic interest because this is the highest coordination number (the number of nearest neighbors in a crystal lattice or complex) yet observed in chemistry.

About the Author

Dr. Kyung Byung Yoon is Professor of Chemistry at Sogang University, Seoul, Korea. He is also the Director of the Korea Center for Artificial Photosynthesis. He has been working in the area of zeolite research for the last 30 years. He is the recipient of the Korea Science Award and the Academic Award from the National Academy of Science, Korea.

Author: Kyung Byung Yoon, Sogang University, Seoul (Rep. Korea), http://hompi.sogang.ac.kr/zeolite/eyoon.htm

Title: A Novel Vanadosilicate with Hexadeca-Coordinated Cs+ Ions as a Highly Effective Cs+ Remover

Angewandte Chemie International Edition, Permalink to the article: http://dx.doi.org/10.1002/anie.201402778

Dr. Kyung Byung Yoon | Angewandte Chemie

Further reports about: Fukushima cesium concentration concentrations ions materials potassium reactor zeolite

More articles from Life Sciences:

nachricht How brains surrender to sleep
23.06.2017 | IMP - Forschungsinstitut für Molekulare Pathologie GmbH

nachricht A new technique isolates neuronal activity during memory consolidation
22.06.2017 | Spanish National Research Council (CSIC)

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Can we see monkeys from space? Emerging technologies to map biodiversity

An international team of scientists has proposed a new multi-disciplinary approach in which an array of new technologies will allow us to map biodiversity and the risks that wildlife is facing at the scale of whole landscapes. The findings are published in Nature Ecology and Evolution. This international research is led by the Kunming Institute of Zoology from China, University of East Anglia, University of Leicester and the Leibniz Institute for Zoo and Wildlife Research.

Using a combination of satellite and ground data, the team proposes that it is now possible to map biodiversity with an accuracy that has not been previously...

Im Focus: Climate satellite: Tracking methane with robust laser technology

Heatwaves in the Arctic, longer periods of vegetation in Europe, severe floods in West Africa – starting in 2021, scientists want to explore the emissions of the greenhouse gas methane with the German-French satellite MERLIN. This is made possible by a new robust laser system of the Fraunhofer Institute for Laser Technology ILT in Aachen, which achieves unprecedented measurement accuracy.

Methane is primarily the result of the decomposition of organic matter. The gas has a 25 times greater warming potential than carbon dioxide, but is not as...

Im Focus: How protons move through a fuel cell

Hydrogen is regarded as the energy source of the future: It is produced with solar power and can be used to generate heat and electricity in fuel cells. Empa researchers have now succeeded in decoding the movement of hydrogen ions in crystals – a key step towards more efficient energy conversion in the hydrogen industry of tomorrow.

As charge carriers, electrons and ions play the leading role in electrochemical energy storage devices and converters such as batteries and fuel cells. Proton...

Im Focus: A unique data centre for cosmological simulations

Scientists from the Excellence Cluster Universe at the Ludwig-Maximilians-Universität Munich have establised "Cosmowebportal", a unique data centre for cosmological simulations located at the Leibniz Supercomputing Centre (LRZ) of the Bavarian Academy of Sciences. The complete results of a series of large hydrodynamical cosmological simulations are available, with data volumes typically exceeding several hundred terabytes. Scientists worldwide can interactively explore these complex simulations via a web interface and directly access the results.

With current telescopes, scientists can observe our Universe’s galaxies and galaxy clusters and their distribution along an invisible cosmic web. From the...

Im Focus: Scientists develop molecular thermometer for contactless measurement using infrared light

Temperature measurements possible even on the smallest scale / Molecular ruby for use in material sciences, biology, and medicine

Chemists at Johannes Gutenberg University Mainz (JGU) in cooperation with researchers of the German Federal Institute for Materials Research and Testing (BAM)...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Plants are networkers

19.06.2017 | Event News

Digital Survival Training for Executives

13.06.2017 | Event News

Global Learning Council Summit 2017

13.06.2017 | Event News

 
Latest News

Quantum thermometer or optical refrigerator?

23.06.2017 | Physics and Astronomy

A 100-year-old physics problem has been solved at EPFL

23.06.2017 | Physics and Astronomy

Equipping form with function

23.06.2017 | Information Technology

VideoLinks
B2B-VideoLinks
More VideoLinks >>>