Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Ecological 'flash mobs': It's all about timing ... and magnets?

08.04.2015

Study finds new ways of measuring synchrony in ecology

How does an acorn know to fall when the other acorns do? What triggers insects, or disease, to suddenly break out over large areas? Why do fruit trees have boom and bust years?


This image illustrates local population density near a critical transition in the synchrony of an ecological system.

Credit: UC Davis

The question of what generates such synchronous, ecological "flash mobs" over long distances has long perplexed population ecologists. Part of the answer has to do with something seemingly unrelated: what makes a magnet a magnet.

A study by scientists at the University of California, Davis, found that the same mathematical model that's been used to study how magnets work - a well-known concept in physics called the Ising model -- can be applied to understanding what causes events to occur at the same time over long distances, despite the absence of an external, disruptive force.

The work, published online April 8 in the journal Nature Communications, provides new ways of measuring synchrony in ecology, which has broader implications for things like extinction and disease.

ANIMAL -- AND FRUIT TREE -- MAGNETISM

What does all of this have to do with the magnet holding up the to-do list on your refrigerator?

Consider the vole.

"They get kicked out of the nest and have a typical distance they travel," said co-leading author Alan Hastings, a professor in the Department of Environmental Science and Policy. "But the populations are rising and falling over much longer distances. The effect on the voles is happening much farther than that individual vole travels in his lifetime."

That effect can be explained by the Ising model, according to the study.

Or, take fruit trees.

Every few years certain trees bear exceptional amounts of fruit or nuts in between years when they produce almost none in a poorly understood process called masting.

"All the fruit trees have their big year on the same year because of the same model that has to do with getting little magnets lined up at once to create a big-scale magnet," Hastings explained. "Improving our understanding of models that describe how things go into synchrony over long distances is very important for understanding population dynamics."

SCIENCE MASHUPS

The work was funded by the National Science Foundation's INSPIRE program, which supports interdisciplinary collaborations between scientific fields that don't often work together.

"Our paper forges an unexpectedly strong connection between physics and population biology," said co-leading author Andrew Noble, a UC Davis project scientist. "It's the discovery of a common framework for understanding seemingly unrelated scientific questions."

###

More information:

http://ucdavis.edu/

Media Contact

Alan Hastings
amhastings@ucdavis.edu
530-752-8116

 @ucdavisnews

http://www.ucdavis.edu 

Alan Hastings | EurekAlert!

More articles from Life Sciences:

nachricht Antimicrobial substances identified in Komodo dragon blood
23.02.2017 | American Chemical Society

nachricht New Mechanisms of Gene Inactivation may prevent Aging and Cancer
23.02.2017 | Leibniz-Institut für Alternsforschung - Fritz-Lipmann-Institut e.V. (FLI)

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Breakthrough with a chain of gold atoms

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

Im Focus: DNA repair: a new letter in the cell alphabet

Results reveal how discoveries may be hidden in scientific “blind spots”

Cells need to repair damaged DNA in our genes to prevent the development of cancer and other diseases. Our cells therefore activate and send “repair-proteins”...

Im Focus: Dresdner scientists print tomorrow’s world

The Fraunhofer IWS Dresden and Technische Universität Dresden inaugurated their jointly operated Center for Additive Manufacturing Dresden (AMCD) with a festive ceremony on February 7, 2017. Scientists from various disciplines perform research on materials, additive manufacturing processes and innovative technologies, which build up components in a layer by layer process. This technology opens up new horizons for component design and combinations of functions. For example during fabrication, electrical conductors and sensors are already able to be additively manufactured into components. They provide information about stress conditions of a product during operation.

The 3D-printing technology, or additive manufacturing as it is often called, has long made the step out of scientific research laboratories into industrial...

Im Focus: Mimicking nature's cellular architectures via 3-D printing

Research offers new level of control over the structure of 3-D printed materials

Nature does amazing things with limited design materials. Grass, for example, can support its own weight, resist strong wind loads, and recover after being...

Im Focus: Three Magnetic States for Each Hole

Nanometer-scale magnetic perforated grids could create new possibilities for computing. Together with international colleagues, scientists from the Helmholtz Zentrum Dresden-Rossendorf (HZDR) have shown how a cobalt grid can be reliably programmed at room temperature. In addition they discovered that for every hole ("antidot") three magnetic states can be configured. The results have been published in the journal "Scientific Reports".

Physicist Dr. Rantej Bali from the HZDR, together with scientists from Singapore and Australia, designed a special grid structure in a thin layer of cobalt in...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Booth and panel discussion – The Lindau Nobel Laureate Meetings at the AAAS 2017 Annual Meeting

13.02.2017 | Event News

Complex Loading versus Hidden Reserves

10.02.2017 | Event News

International Conference on Crystal Growth in Freiburg

09.02.2017 | Event News

 
Latest News

From rocks in Colorado, evidence of a 'chaotic solar system'

23.02.2017 | Physics and Astronomy

'Quartz' crystals at the Earth's core power its magnetic field

23.02.2017 | Earth Sciences

Antimicrobial substances identified in Komodo dragon blood

23.02.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>