Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

EBV-derived microRNAs silence immune alarm signals of the host cell

05.10.2016

Epstein-Barr virus (EBV) prevents infected cells from being attacked by the immune system. The virus drives production of small molecules, so-called microRNAs, that suppress alarm signals sent out by the infected cell. Scientists at Helmholtz Zentrum München have elucidated this previously unknown mechanism.

The EBV virus, first described by the English virologists Michael Epstein and Yvonne M. Barr, is found in the majority of the world’s population, but is usually held in check by the immune system. Nevertheless, the body is unable to eliminate this pathogen completely.


The Epstein-Barr virus (EBV) prevents infected cells from being attacked by the immune system.

Source: Prof. Georg Bornkamm / Helmholtz Zentrum München

The team of scientists led by Prof. Wolfgang Hammerschmidt, head of the Research Unit Gene Vectors at Helmholtz Zentrum München and a member of the German Center for Infection Research (DZIF), is striving to find out the reasons behind this.

Hide-and-seek: EBV makes itself invisible

“Our new studies show that by means of microRNAs, the virus prevents the infected cell from alerting the immune system,” said Hammerschmidt, summarizing the findings. EBV usually hides in B cells, a class of white blood cells. If they are infected by EBV, the virus induces the cells to proliferate and thus to expand the reservoir of viruses. The B cells usually respond with an alarm signal to the immune system: They present molecules of the virus on their surface and secrete inflammatory cytokines to attract immune cells.

“It's just this alarm signal that's suppressed by microRNAs made by the virus,” said Manuel Albanese, a scientist in the Research Unit Gene Vectors. His colleague Takanobu Tagawa added: “The microRNAs block production of the proteins that would ring this alarm.” The two doctoral students share the lead authorship of the two publications in the Proceedings of the National Academy of Sciences and in the Journal of Experimental Medicine.*

New approach may be promising for cancer therapy

Since the EBV virus drives division of B cells and thereby causes particular forms of cancer, the researchers are considering how to apply these findings to cancer therapy. “The mechanism we discovered renders killer T cells and helper T cells inactive, even when they directly face the infected cell,” said study leader Hammerschmidt.** “If it were possible to disrupt this blockade, this could be an interesting approach to treat cancer: the immune system could then better fight tumors that are triggered by EBV.“ For other diseases, clinical studies on active substances that shut off specific microRNAs have already started, the authors say.

Further Information

* microRNAs (miRNAs) are noncoding RNAs that play an important role in gene regulation and especially in the silencing of genes. Generally, they have a size of 21 to 23 nucleotides and are very short – hence the name.

** Killer T cells (also known as CD8 T cells) can destroy the infected cells, thus preventing the virus from multiplying. Helper T cells (also called CD4 T-cells) support them and also ensure the production of antibodies against the virus.

Background:
About a year ago, scientists of the Gene Vectors Research Unit at Helmholtz Zentrum München discovered another mechanism the EBV virus uses to hide in human cells. Here the LMP2A protein plays a crucial role: http://www.helmholtz-muenchen.de/en/press-media/press-releases/2015/press-releas...

Original Publications:
Tagawa, T. & Albanese, M. et al. (2016): Epstein-Barr Viral miRNAs Inhibit Antiviral CD4+ T Cell Responses Targeting IL-12 and Peptide Processing. Journal of Experimental Medicine, doi: 10.1084/jem.20160248

Albanese, M. & Tagawa, T. et al. (2016): Epstein-Barr virus miRNAs inhibit immune surveillance by virus-specific CD8+ T cells. Proceedings of the National Academy of Sciences (PNAS), doi: 10.1073/pnas.1605884113

The Helmholtz Zentrum München, the German Research Center for Environmental Health, pursues the goal of developing personalized medical approaches for the prevention and therapy of major common diseases such as diabetes and lung diseases. To achieve this, it investigates the interaction of genetics, environmental factors and lifestyle. The Helmholtz Zentrum München is headquartered in Neuherberg in the north of Munich and has about 2,300 staff members. It is a member of the Helmholtz Association, a community of 18 scientific-technical and medical-biological research centers with a total of about 37,000 staff members. http://www.helmholtz-muenchen.de/en

The Research Unit Gene Vectors studies EBV's molecular functions to understand how the virus contributes to different types of disease. The scientists analyse the immune system of virus carriers to find out how EBV and other herpes viruses are kept in check, and why immune control has failed in patients with disease. They also investigate the origins of cancers of the immune system - lymphoma and leukaemia. Their ultimate goal is to develop new drugs, vaccines and cell-based therapies in order to efficiently treat or – preferentially – prevent infectious diseases and cancer. http://www.helmholtz-muenchen.de/en/agv

At the German Center for Infection Research (DZIF), over 500 scientists from 35 institutions nationwide jointly develop new approaches for the prevention, diagnosis and treatment of infectious diseases. Their aim is to translate research results into clinical practice rapidly and effectively. With this, the DZIF paves the way for developing new vaccines, diagnostics and drugs in the fight against infections. http://www.dzif.de.

Contact for the media:
Department of Communication, Helmholtz Zentrum München - German Research Center for Environmental Health, Ingolstädter Landstr. 1, 85764 Neuherberg - Tel. +49 89 3187 2238 - Fax: +49 89 3187 3324 - E-mail: presse@helmholtz-muenchen.de

Scientific Contact at Helmholtz Zentrum München:
Prof. Dr. Wolfgang Hammerschmidt, Helmholtz Zentrum München - German Research Center for Environmental Health, Research Unit Gene Vectors, Marchioninistraße 25, 81377 München - Tel. +49 89 3187 1506, E-mail: hammerschmidt@helmholtz-muenchen.de

Sonja Opitz | Helmholtz Zentrum München - Deutsches Forschungszentrum für Gesundheit und Umwelt

Further reports about: B cells EBV Environmental Health Helmholtz T cells diseases immune system miRNAs

More articles from Life Sciences:

nachricht Molecular Force Sensors
20.09.2017 | Max-Planck-Institut für Biochemie

nachricht Foster tadpoles trigger parental instinct in poison frogs
20.09.2017 | Veterinärmedizinische Universität Wien

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Tiny lasers from a gallery of whispers

New technique promises tunable laser devices

Whispering gallery mode (WGM) resonators are used to make tiny micro-lasers, sensors, switches, routers and other devices. These tiny structures rely on a...

Im Focus: Ultrafast snapshots of relaxing electrons in solids

Using ultrafast flashes of laser and x-ray radiation, scientists at the Max Planck Institute of Quantum Optics (Garching, Germany) took snapshots of the briefest electron motion inside a solid material to date. The electron motion lasted only 750 billionths of the billionth of a second before it fainted, setting a new record of human capability to capture ultrafast processes inside solids!

When x-rays shine onto solid materials or large molecules, an electron is pushed away from its original place near the nucleus of the atom, leaving a hole...

Im Focus: Quantum Sensors Decipher Magnetic Ordering in a New Semiconducting Material

For the first time, physicists have successfully imaged spiral magnetic ordering in a multiferroic material. These materials are considered highly promising candidates for future data storage media. The researchers were able to prove their findings using unique quantum sensors that were developed at Basel University and that can analyze electromagnetic fields on the nanometer scale. The results – obtained by scientists from the University of Basel’s Department of Physics, the Swiss Nanoscience Institute, the University of Montpellier and several laboratories from University Paris-Saclay – were recently published in the journal Nature.

Multiferroics are materials that simultaneously react to electric and magnetic fields. These two properties are rarely found together, and their combined...

Im Focus: Fast, convenient & standardized: New lab innovation for automated tissue engineering & drug

MBM ScienceBridge GmbH successfully negotiated a license agreement between University Medical Center Göttingen (UMG) and the biotech company Tissue Systems Holding GmbH about commercial use of a multi-well tissue plate for automated and reliable tissue engineering & drug testing.

MBM ScienceBridge GmbH successfully negotiated a license agreement between University Medical Center Göttingen (UMG) and the biotech company Tissue Systems...

Im Focus: Silencing bacteria

HZI researchers pave the way for new agents that render hospital pathogens mute

Pathogenic bacteria are becoming resistant to common antibiotics to an ever increasing degree. One of the most difficult germs is Pseudomonas aeruginosa, a...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

“Lasers in Composites Symposium” in Aachen – from Science to Application

19.09.2017 | Event News

I-ESA 2018 – Call for Papers

12.09.2017 | Event News

EMBO at Basel Life, a new conference on current and emerging life science research

06.09.2017 | Event News

 
Latest News

Molecular Force Sensors

20.09.2017 | Life Sciences

Producing electricity during flight

20.09.2017 | Power and Electrical Engineering

Tiny lasers from a gallery of whispers

20.09.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>