Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

EBV-derived microRNAs silence immune alarm signals of the host cell

05.10.2016

Epstein-Barr virus (EBV) prevents infected cells from being attacked by the immune system. The virus drives production of small molecules, so-called microRNAs, that suppress alarm signals sent out by the infected cell. Scientists at Helmholtz Zentrum München have elucidated this previously unknown mechanism.

The EBV virus, first described by the English virologists Michael Epstein and Yvonne M. Barr, is found in the majority of the world’s population, but is usually held in check by the immune system. Nevertheless, the body is unable to eliminate this pathogen completely.


The Epstein-Barr virus (EBV) prevents infected cells from being attacked by the immune system.

Source: Prof. Georg Bornkamm / Helmholtz Zentrum München

The team of scientists led by Prof. Wolfgang Hammerschmidt, head of the Research Unit Gene Vectors at Helmholtz Zentrum München and a member of the German Center for Infection Research (DZIF), is striving to find out the reasons behind this.

Hide-and-seek: EBV makes itself invisible

“Our new studies show that by means of microRNAs, the virus prevents the infected cell from alerting the immune system,” said Hammerschmidt, summarizing the findings. EBV usually hides in B cells, a class of white blood cells. If they are infected by EBV, the virus induces the cells to proliferate and thus to expand the reservoir of viruses. The B cells usually respond with an alarm signal to the immune system: They present molecules of the virus on their surface and secrete inflammatory cytokines to attract immune cells.

“It's just this alarm signal that's suppressed by microRNAs made by the virus,” said Manuel Albanese, a scientist in the Research Unit Gene Vectors. His colleague Takanobu Tagawa added: “The microRNAs block production of the proteins that would ring this alarm.” The two doctoral students share the lead authorship of the two publications in the Proceedings of the National Academy of Sciences and in the Journal of Experimental Medicine.*

New approach may be promising for cancer therapy

Since the EBV virus drives division of B cells and thereby causes particular forms of cancer, the researchers are considering how to apply these findings to cancer therapy. “The mechanism we discovered renders killer T cells and helper T cells inactive, even when they directly face the infected cell,” said study leader Hammerschmidt.** “If it were possible to disrupt this blockade, this could be an interesting approach to treat cancer: the immune system could then better fight tumors that are triggered by EBV.“ For other diseases, clinical studies on active substances that shut off specific microRNAs have already started, the authors say.

Further Information

* microRNAs (miRNAs) are noncoding RNAs that play an important role in gene regulation and especially in the silencing of genes. Generally, they have a size of 21 to 23 nucleotides and are very short – hence the name.

** Killer T cells (also known as CD8 T cells) can destroy the infected cells, thus preventing the virus from multiplying. Helper T cells (also called CD4 T-cells) support them and also ensure the production of antibodies against the virus.

Background:
About a year ago, scientists of the Gene Vectors Research Unit at Helmholtz Zentrum München discovered another mechanism the EBV virus uses to hide in human cells. Here the LMP2A protein plays a crucial role: http://www.helmholtz-muenchen.de/en/press-media/press-releases/2015/press-releas...

Original Publications:
Tagawa, T. & Albanese, M. et al. (2016): Epstein-Barr Viral miRNAs Inhibit Antiviral CD4+ T Cell Responses Targeting IL-12 and Peptide Processing. Journal of Experimental Medicine, doi: 10.1084/jem.20160248

Albanese, M. & Tagawa, T. et al. (2016): Epstein-Barr virus miRNAs inhibit immune surveillance by virus-specific CD8+ T cells. Proceedings of the National Academy of Sciences (PNAS), doi: 10.1073/pnas.1605884113

The Helmholtz Zentrum München, the German Research Center for Environmental Health, pursues the goal of developing personalized medical approaches for the prevention and therapy of major common diseases such as diabetes and lung diseases. To achieve this, it investigates the interaction of genetics, environmental factors and lifestyle. The Helmholtz Zentrum München is headquartered in Neuherberg in the north of Munich and has about 2,300 staff members. It is a member of the Helmholtz Association, a community of 18 scientific-technical and medical-biological research centers with a total of about 37,000 staff members. http://www.helmholtz-muenchen.de/en

The Research Unit Gene Vectors studies EBV's molecular functions to understand how the virus contributes to different types of disease. The scientists analyse the immune system of virus carriers to find out how EBV and other herpes viruses are kept in check, and why immune control has failed in patients with disease. They also investigate the origins of cancers of the immune system - lymphoma and leukaemia. Their ultimate goal is to develop new drugs, vaccines and cell-based therapies in order to efficiently treat or – preferentially – prevent infectious diseases and cancer. http://www.helmholtz-muenchen.de/en/agv

At the German Center for Infection Research (DZIF), over 500 scientists from 35 institutions nationwide jointly develop new approaches for the prevention, diagnosis and treatment of infectious diseases. Their aim is to translate research results into clinical practice rapidly and effectively. With this, the DZIF paves the way for developing new vaccines, diagnostics and drugs in the fight against infections. http://www.dzif.de.

Contact for the media:
Department of Communication, Helmholtz Zentrum München - German Research Center for Environmental Health, Ingolstädter Landstr. 1, 85764 Neuherberg - Tel. +49 89 3187 2238 - Fax: +49 89 3187 3324 - E-mail: presse@helmholtz-muenchen.de

Scientific Contact at Helmholtz Zentrum München:
Prof. Dr. Wolfgang Hammerschmidt, Helmholtz Zentrum München - German Research Center for Environmental Health, Research Unit Gene Vectors, Marchioninistraße 25, 81377 München - Tel. +49 89 3187 1506, E-mail: hammerschmidt@helmholtz-muenchen.de

Sonja Opitz | Helmholtz Zentrum München - Deutsches Forschungszentrum für Gesundheit und Umwelt

Further reports about: B cells EBV Environmental Health Helmholtz T cells diseases immune system miRNAs

More articles from Life Sciences:

nachricht Topologische Quantenchemie
21.07.2017 | Max-Planck-Institut für Chemische Physik fester Stoffe

nachricht Topological Quantum Chemistry
21.07.2017 | Max-Planck-Institut für Chemische Physik fester Stoffe

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: 3-D scanning with water

3-D shape acquisition using water displacement as the shape sensor for the reconstruction of complex objects

A global team of computer scientists and engineers have developed an innovative technique that more completely reconstructs challenging 3D objects. An ancient...

Im Focus: Manipulating Electron Spins Without Loss of Information

Physicists have developed a new technique that uses electrical voltages to control the electron spin on a chip. The newly-developed method provides protection from spin decay, meaning that the contained information can be maintained and transmitted over comparatively large distances, as has been demonstrated by a team from the University of Basel’s Department of Physics and the Swiss Nanoscience Institute. The results have been published in Physical Review X.

For several years, researchers have been trying to use the spin of an electron to store and transmit information. The spin of each electron is always coupled...

Im Focus: The proton precisely weighted

What is the mass of a proton? Scientists from Germany and Japan successfully did an important step towards the most exact knowledge of this fundamental constant. By means of precision measurements on a single proton, they could improve the precision by a factor of three and also correct the existing value.

To determine the mass of a single proton still more accurate – a group of physicists led by Klaus Blaum and Sven Sturm of the Max Planck Institute for Nuclear...

Im Focus: On the way to a biological alternative

A bacterial enzyme enables reactions that open up alternatives to key industrial chemical processes

The research team of Prof. Dr. Oliver Einsle at the University of Freiburg's Institute of Biochemistry has long been exploring the functioning of nitrogenase....

Im Focus: The 1 trillion tonne iceberg

Larsen C Ice Shelf rift finally breaks through

A one trillion tonne iceberg - one of the biggest ever recorded -- has calved away from the Larsen C Ice Shelf in Antarctica, after a rift in the ice,...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Closing the Sustainability Circle: Protection of Food with Biobased Materials

21.07.2017 | Event News

»We are bringing Additive Manufacturing to SMEs«

19.07.2017 | Event News

The technology with a feel for feelings

12.07.2017 | Event News

 
Latest News

Ultrathin device harvests electricity from human motion

24.07.2017 | Power and Electrical Engineering

Scientists announce the quest for high-index materials

24.07.2017 | Materials Sciences

ADIR Project: Lasers Recover Valuable Materials

24.07.2017 | Materials Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>