Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Eavesdropping on the forest to monitor wildlife

19.03.2015

Researchers develop a novel passive acoustic monitoring (PAM) method for the automated detection of chimpanzees and two monkey species

Traditionally, censusing of wild primates has been conducted using transect methodology where teams of human surveyors walk kilometers of line transects to collect data on primate sightings and vocalizations.


The loud calls of the king colobus monkey, also known as the black and white colobus, performed best in this study.

© MPI for Evolutionary Anthropology / Ammie Kalan


The autonomous recording devices (ARUs) used in this study were the Songmeter SM2+ produced by Wildlife Acoustics.

© MPI for Evolutionary Anthropology / Ammie Kalan

Motivated by the increasing availability of cost-efficient audio-visual technologies, researchers at the Max Planck Institute for Evolutionary Anthropology in Leipzig, and the Fraunhofer Institute for Digital Media Technology (IDMT) in Ilmenau, investigated to what extent autonomous recording devices, combined with an automated data processing approach, could be used to monitor wild forest primates.

To achieve this goal they used an interdisciplinary team of sound engineers, biomonitoring specialists, statisticians, and primate vocalization experts.

A system was developed in collaboration with the Fraunhofer IDMT, to automatically scan large amounts of continuous audio data to isolate sound signals produced by chimpanzees and two other primate species living in the tropical rainforest of Taï National Park in Côte d’Ivoire. The researchers used autonomous recording devices (ARUs) produced by the company Wildlife Acoustics. First, a training library of annotated primate sounds was compiled.

“The algorithm was then developed to scan forest recordings and automatically detect and classify the chimpanzee buttress drumming sound and the loud calls of the diana monkey and king colobus monkey”, says Ammie Kalan, the project leader.

The researchers then applied this algorithm and verified how often it falsely detected a call (false positive) or failed to correctly identify a call (false negative). Using an occupancy modeling approach, they then derived occupancy probabilities for each of the three primate species, also known as the probability with which a species is present in a given study area.

The occupancy probability estimates derived from PAM data approximated those obtained from point transects conducted in the same area by humans. In particular, the longitudinal data obtained using PAM appeared to be especially beneficial for accurately detecting chimpanzees since they are cryptic and often remain quiet when in the presence of humans.

For all three species, probabilities were robust to the automated PAM data but some degree of manually verifying the automated output was still required. Nevertheless, the time effort required to clean some of the data manually was still considerably less than the time investment for walking transects.

“Our results show that for the best performing species with this system, the king colobus monkey, accurate occupancy probabilities could be derived by just cleaning 90% of the false positives, which translates to 23 minutes for 179 hours of audio data”, says Ammie Kalan.

“This study only shows the first step that is possible with this method. In principle, the system could be used for long-term monitoring whereby changes in presence or detection rates could be used as an early warning system to alert field managers and to help them respond to threats”, says project supervisor Hjalmar Kühl.

“The importance in using autonomous data collection devices, such as ARUs, along with automated data processing methods lies in obtaining data about wild animals closer to real-time rather than months or years later. Field workers can then react more quickly, allowing interventions to become more effective”, says Ammie Kalan.

The authors hope this study will motivate further cross-disciplinary research into PAM and its potential to aid field workers in managing the last strongholds of endangered primate populations, as well as other taxa.


Contact

Ammie Kalan
Max Planck Institute for Evolutionary Anthropology, Leipzig
Phone: +49 341 3550-205
Email: ammie_kalan@eva.mpg.de

Dr. Hjalmar Kühl
Max Planck Institute for Evolutionary Anthropology, Leipzig
Phone: +49 341 3550236
Fax: +49 341 3550299
Email: kuehl@eva.mpg.de

Sandra Jacob
Press and Public Relations
Max Planck Institute for Evolutionary Anthropology, Leipzig
Phone: +49 341 3550-122
Fax: +49 341 3550-119
Email: info@eva.mpg.de


Original publication
Ammie K. Kalan, Roger Mundry, Oliver J.J. Wagner, Stefanie Heinicke, Christophe Boesch, and Hjalmar S. Kühl

Towards the automated detection and occupancy estimation of primates using passive acoustic monitoring

Ecological Indicators, 18 March 2015, DOI: 10.1016/j.ecolind.2015.02.023

Ammie Kalan | Max Planck Institute for Evolutionary Anthropology, Leipzig

More articles from Life Sciences:

nachricht Closing the carbon loop
08.12.2016 | University of Pittsburgh

nachricht Newly discovered bacteria-binding protein in the intestine
08.12.2016 | University of Gothenburg

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Significantly more productivity in USP lasers

In recent years, lasers with ultrashort pulses (USP) down to the femtosecond range have become established on an industrial scale. They could advance some applications with the much-lauded “cold ablation” – if that meant they would then achieve more throughput. A new generation of process engineering that will address this issue in particular will be discussed at the “4th UKP Workshop – Ultrafast Laser Technology” in April 2017.

Even back in the 1990s, scientists were comparing materials processing with nanosecond, picosecond and femtosesecond pulses. The result was surprising:...

Im Focus: Shape matters when light meets atom

Mapping the interaction of a single atom with a single photon may inform design of quantum devices

Have you ever wondered how you see the world? Vision is about photons of light, which are packets of energy, interacting with the atoms or molecules in what...

Im Focus: Novel silicon etching technique crafts 3-D gradient refractive index micro-optics

A multi-institutional research collaboration has created a novel approach for fabricating three-dimensional micro-optics through the shape-defined formation of porous silicon (PSi), with broad impacts in integrated optoelectronics, imaging, and photovoltaics.

Working with colleagues at Stanford and The Dow Chemical Company, researchers at the University of Illinois at Urbana-Champaign fabricated 3-D birefringent...

Im Focus: Quantum Particles Form Droplets

In experiments with magnetic atoms conducted at extremely low temperatures, scientists have demonstrated a unique phase of matter: The atoms form a new type of quantum liquid or quantum droplet state. These so called quantum droplets may preserve their form in absence of external confinement because of quantum effects. The joint team of experimental physicists from Innsbruck and theoretical physicists from Hannover report on their findings in the journal Physical Review X.

“Our Quantum droplets are in the gas phase but they still drop like a rock,” explains experimental physicist Francesca Ferlaino when talking about the...

Im Focus: MADMAX: Max Planck Institute for Physics takes up axion research

The Max Planck Institute for Physics (MPP) is opening up a new research field. A workshop from November 21 - 22, 2016 will mark the start of activities for an innovative axion experiment. Axions are still only purely hypothetical particles. Their detection could solve two fundamental problems in particle physics: What dark matter consists of and why it has not yet been possible to directly observe a CP violation for the strong interaction.

The “MADMAX” project is the MPP’s commitment to axion research. Axions are so far only a theoretical prediction and are difficult to detect: on the one hand,...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

ICTM Conference 2017: Production technology for turbomachine manufacturing of the future

16.11.2016 | Event News

Innovation Day Laser Technology – Laser Additive Manufacturing

01.11.2016 | Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

 
Latest News

Closing the carbon loop

08.12.2016 | Life Sciences

Applicability of dynamic facilitation theory to binary hard disk systems

08.12.2016 | Physics and Astronomy

Scientists track chemical and structural evolution of catalytic nanoparticles in 3-D

08.12.2016 | Materials Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>