Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Eavesdropping on the forest to monitor wildlife

19.03.2015

Researchers develop a novel passive acoustic monitoring (PAM) method for the automated detection of chimpanzees and two monkey species

Traditionally, censusing of wild primates has been conducted using transect methodology where teams of human surveyors walk kilometers of line transects to collect data on primate sightings and vocalizations.


The loud calls of the king colobus monkey, also known as the black and white colobus, performed best in this study.

© MPI for Evolutionary Anthropology / Ammie Kalan


The autonomous recording devices (ARUs) used in this study were the Songmeter SM2+ produced by Wildlife Acoustics.

© MPI for Evolutionary Anthropology / Ammie Kalan

Motivated by the increasing availability of cost-efficient audio-visual technologies, researchers at the Max Planck Institute for Evolutionary Anthropology in Leipzig, and the Fraunhofer Institute for Digital Media Technology (IDMT) in Ilmenau, investigated to what extent autonomous recording devices, combined with an automated data processing approach, could be used to monitor wild forest primates.

To achieve this goal they used an interdisciplinary team of sound engineers, biomonitoring specialists, statisticians, and primate vocalization experts.

A system was developed in collaboration with the Fraunhofer IDMT, to automatically scan large amounts of continuous audio data to isolate sound signals produced by chimpanzees and two other primate species living in the tropical rainforest of Taï National Park in Côte d’Ivoire. The researchers used autonomous recording devices (ARUs) produced by the company Wildlife Acoustics. First, a training library of annotated primate sounds was compiled.

“The algorithm was then developed to scan forest recordings and automatically detect and classify the chimpanzee buttress drumming sound and the loud calls of the diana monkey and king colobus monkey”, says Ammie Kalan, the project leader.

The researchers then applied this algorithm and verified how often it falsely detected a call (false positive) or failed to correctly identify a call (false negative). Using an occupancy modeling approach, they then derived occupancy probabilities for each of the three primate species, also known as the probability with which a species is present in a given study area.

The occupancy probability estimates derived from PAM data approximated those obtained from point transects conducted in the same area by humans. In particular, the longitudinal data obtained using PAM appeared to be especially beneficial for accurately detecting chimpanzees since they are cryptic and often remain quiet when in the presence of humans.

For all three species, probabilities were robust to the automated PAM data but some degree of manually verifying the automated output was still required. Nevertheless, the time effort required to clean some of the data manually was still considerably less than the time investment for walking transects.

“Our results show that for the best performing species with this system, the king colobus monkey, accurate occupancy probabilities could be derived by just cleaning 90% of the false positives, which translates to 23 minutes for 179 hours of audio data”, says Ammie Kalan.

“This study only shows the first step that is possible with this method. In principle, the system could be used for long-term monitoring whereby changes in presence or detection rates could be used as an early warning system to alert field managers and to help them respond to threats”, says project supervisor Hjalmar Kühl.

“The importance in using autonomous data collection devices, such as ARUs, along with automated data processing methods lies in obtaining data about wild animals closer to real-time rather than months or years later. Field workers can then react more quickly, allowing interventions to become more effective”, says Ammie Kalan.

The authors hope this study will motivate further cross-disciplinary research into PAM and its potential to aid field workers in managing the last strongholds of endangered primate populations, as well as other taxa.


Contact

Ammie Kalan
Max Planck Institute for Evolutionary Anthropology, Leipzig
Phone: +49 341 3550-205
Email: ammie_kalan@eva.mpg.de

Dr. Hjalmar Kühl
Max Planck Institute for Evolutionary Anthropology, Leipzig
Phone: +49 341 3550236
Fax: +49 341 3550299
Email: kuehl@eva.mpg.de

Sandra Jacob
Press and Public Relations
Max Planck Institute for Evolutionary Anthropology, Leipzig
Phone: +49 341 3550-122
Fax: +49 341 3550-119
Email: info@eva.mpg.de


Original publication
Ammie K. Kalan, Roger Mundry, Oliver J.J. Wagner, Stefanie Heinicke, Christophe Boesch, and Hjalmar S. Kühl

Towards the automated detection and occupancy estimation of primates using passive acoustic monitoring

Ecological Indicators, 18 March 2015, DOI: 10.1016/j.ecolind.2015.02.023

Ammie Kalan | Max Planck Institute for Evolutionary Anthropology, Leipzig

More articles from Life Sciences:

nachricht New technique unveils 'matrix' inside tissues and tumors
29.06.2017 | University of Copenhagen The Faculty of Health and Medical Sciences

nachricht Designed proteins to treat muscular dystrophy
29.06.2017 | Universität Basel

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Making Waves

Computer scientists use wave packet theory to develop realistic, detailed water wave simulations in real time. Their results will be presented at this year’s SIGGRAPH conference.

Think about the last time you were at a lake, river, or the ocean. Remember the ripples of the water, the waves crashing against the rocks, the wake following...

Im Focus: Can we see monkeys from space? Emerging technologies to map biodiversity

An international team of scientists has proposed a new multi-disciplinary approach in which an array of new technologies will allow us to map biodiversity and the risks that wildlife is facing at the scale of whole landscapes. The findings are published in Nature Ecology and Evolution. This international research is led by the Kunming Institute of Zoology from China, University of East Anglia, University of Leicester and the Leibniz Institute for Zoo and Wildlife Research.

Using a combination of satellite and ground data, the team proposes that it is now possible to map biodiversity with an accuracy that has not been previously...

Im Focus: Climate satellite: Tracking methane with robust laser technology

Heatwaves in the Arctic, longer periods of vegetation in Europe, severe floods in West Africa – starting in 2021, scientists want to explore the emissions of the greenhouse gas methane with the German-French satellite MERLIN. This is made possible by a new robust laser system of the Fraunhofer Institute for Laser Technology ILT in Aachen, which achieves unprecedented measurement accuracy.

Methane is primarily the result of the decomposition of organic matter. The gas has a 25 times greater warming potential than carbon dioxide, but is not as...

Im Focus: How protons move through a fuel cell

Hydrogen is regarded as the energy source of the future: It is produced with solar power and can be used to generate heat and electricity in fuel cells. Empa researchers have now succeeded in decoding the movement of hydrogen ions in crystals – a key step towards more efficient energy conversion in the hydrogen industry of tomorrow.

As charge carriers, electrons and ions play the leading role in electrochemical energy storage devices and converters such as batteries and fuel cells. Proton...

Im Focus: A unique data centre for cosmological simulations

Scientists from the Excellence Cluster Universe at the Ludwig-Maximilians-Universität Munich have establised "Cosmowebportal", a unique data centre for cosmological simulations located at the Leibniz Supercomputing Centre (LRZ) of the Bavarian Academy of Sciences. The complete results of a series of large hydrodynamical cosmological simulations are available, with data volumes typically exceeding several hundred terabytes. Scientists worldwide can interactively explore these complex simulations via a web interface and directly access the results.

With current telescopes, scientists can observe our Universe’s galaxies and galaxy clusters and their distribution along an invisible cosmic web. From the...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Plants are networkers

19.06.2017 | Event News

Digital Survival Training for Executives

13.06.2017 | Event News

Global Learning Council Summit 2017

13.06.2017 | Event News

 
Latest News

Nanostructures taste the rainbow

29.06.2017 | Physics and Astronomy

New technique unveils 'matrix' inside tissues and tumors

29.06.2017 | Life Sciences

Cystic fibrosis alters the structure of mucus in airways

29.06.2017 | Health and Medicine

VideoLinks
B2B-VideoLinks
More VideoLinks >>>