Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Eavesdropping on the forest to monitor wildlife

19.03.2015

Researchers develop a novel passive acoustic monitoring (PAM) method for the automated detection of chimpanzees and two monkey species

Traditionally, censusing of wild primates has been conducted using transect methodology where teams of human surveyors walk kilometers of line transects to collect data on primate sightings and vocalizations.


The loud calls of the king colobus monkey, also known as the black and white colobus, performed best in this study.

© MPI for Evolutionary Anthropology / Ammie Kalan


The autonomous recording devices (ARUs) used in this study were the Songmeter SM2+ produced by Wildlife Acoustics.

© MPI for Evolutionary Anthropology / Ammie Kalan

Motivated by the increasing availability of cost-efficient audio-visual technologies, researchers at the Max Planck Institute for Evolutionary Anthropology in Leipzig, and the Fraunhofer Institute for Digital Media Technology (IDMT) in Ilmenau, investigated to what extent autonomous recording devices, combined with an automated data processing approach, could be used to monitor wild forest primates.

To achieve this goal they used an interdisciplinary team of sound engineers, biomonitoring specialists, statisticians, and primate vocalization experts.

A system was developed in collaboration with the Fraunhofer IDMT, to automatically scan large amounts of continuous audio data to isolate sound signals produced by chimpanzees and two other primate species living in the tropical rainforest of Taï National Park in Côte d’Ivoire. The researchers used autonomous recording devices (ARUs) produced by the company Wildlife Acoustics. First, a training library of annotated primate sounds was compiled.

“The algorithm was then developed to scan forest recordings and automatically detect and classify the chimpanzee buttress drumming sound and the loud calls of the diana monkey and king colobus monkey”, says Ammie Kalan, the project leader.

The researchers then applied this algorithm and verified how often it falsely detected a call (false positive) or failed to correctly identify a call (false negative). Using an occupancy modeling approach, they then derived occupancy probabilities for each of the three primate species, also known as the probability with which a species is present in a given study area.

The occupancy probability estimates derived from PAM data approximated those obtained from point transects conducted in the same area by humans. In particular, the longitudinal data obtained using PAM appeared to be especially beneficial for accurately detecting chimpanzees since they are cryptic and often remain quiet when in the presence of humans.

For all three species, probabilities were robust to the automated PAM data but some degree of manually verifying the automated output was still required. Nevertheless, the time effort required to clean some of the data manually was still considerably less than the time investment for walking transects.

“Our results show that for the best performing species with this system, the king colobus monkey, accurate occupancy probabilities could be derived by just cleaning 90% of the false positives, which translates to 23 minutes for 179 hours of audio data”, says Ammie Kalan.

“This study only shows the first step that is possible with this method. In principle, the system could be used for long-term monitoring whereby changes in presence or detection rates could be used as an early warning system to alert field managers and to help them respond to threats”, says project supervisor Hjalmar Kühl.

“The importance in using autonomous data collection devices, such as ARUs, along with automated data processing methods lies in obtaining data about wild animals closer to real-time rather than months or years later. Field workers can then react more quickly, allowing interventions to become more effective”, says Ammie Kalan.

The authors hope this study will motivate further cross-disciplinary research into PAM and its potential to aid field workers in managing the last strongholds of endangered primate populations, as well as other taxa.


Contact

Ammie Kalan
Max Planck Institute for Evolutionary Anthropology, Leipzig
Phone: +49 341 3550-205
Email: ammie_kalan@eva.mpg.de

Dr. Hjalmar Kühl
Max Planck Institute for Evolutionary Anthropology, Leipzig
Phone: +49 341 3550236
Fax: +49 341 3550299
Email: kuehl@eva.mpg.de

Sandra Jacob
Press and Public Relations
Max Planck Institute for Evolutionary Anthropology, Leipzig
Phone: +49 341 3550-122
Fax: +49 341 3550-119
Email: info@eva.mpg.de


Original publication
Ammie K. Kalan, Roger Mundry, Oliver J.J. Wagner, Stefanie Heinicke, Christophe Boesch, and Hjalmar S. Kühl

Towards the automated detection and occupancy estimation of primates using passive acoustic monitoring

Ecological Indicators, 18 March 2015, DOI: 10.1016/j.ecolind.2015.02.023

Ammie Kalan | Max Planck Institute for Evolutionary Anthropology, Leipzig

More articles from Life Sciences:

nachricht Modern genetic sequencing tools give clearer picture of how corals are related
17.08.2017 | University of Washington

nachricht The irresistible fragrance of dying vinegar flies
16.08.2017 | Max-Planck-Institut für chemische Ökologie

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Fizzy soda water could be key to clean manufacture of flat wonder material: Graphene

Whether you call it effervescent, fizzy, or sparkling, carbonated water is making a comeback as a beverage. Aside from quenching thirst, researchers at the University of Illinois at Urbana-Champaign have discovered a new use for these "bubbly" concoctions that will have major impact on the manufacturer of the world's thinnest, flattest, and one most useful materials -- graphene.

As graphene's popularity grows as an advanced "wonder" material, the speed and quality at which it can be manufactured will be paramount. With that in mind,...

Im Focus: Exotic quantum states made from light: Physicists create optical “wells” for a super-photon

Physicists at the University of Bonn have managed to create optical hollows and more complex patterns into which the light of a Bose-Einstein condensate flows. The creation of such highly low-loss structures for light is a prerequisite for complex light circuits, such as for quantum information processing for a new generation of computers. The researchers are now presenting their results in the journal Nature Photonics.

Light particles (photons) occur as tiny, indivisible portions. Many thousands of these light portions can be merged to form a single super-photon if they are...

Im Focus: Circular RNA linked to brain function

For the first time, scientists have shown that circular RNA is linked to brain function. When a RNA molecule called Cdr1as was deleted from the genome of mice, the animals had problems filtering out unnecessary information – like patients suffering from neuropsychiatric disorders.

While hundreds of circular RNAs (circRNAs) are abundant in mammalian brains, one big question has remained unanswered: What are they actually good for? In the...

Im Focus: RAVAN CubeSat measures Earth's outgoing energy

An experimental small satellite has successfully collected and delivered data on a key measurement for predicting changes in Earth's climate.

The Radiometer Assessment using Vertically Aligned Nanotubes (RAVAN) CubeSat was launched into low-Earth orbit on Nov. 11, 2016, in order to test new...

Im Focus: Scientists shine new light on the “other high temperature superconductor”

A study led by scientists of the Max Planck Institute for the Structure and Dynamics of Matter (MPSD) at the Center for Free-Electron Laser Science in Hamburg presents evidence of the coexistence of superconductivity and “charge-density-waves” in compounds of the poorly-studied family of bismuthates. This observation opens up new perspectives for a deeper understanding of the phenomenon of high-temperature superconductivity, a topic which is at the core of condensed matter research since more than 30 years. The paper by Nicoletti et al has been published in the PNAS.

Since the beginning of the 20th century, superconductivity had been observed in some metals at temperatures only a few degrees above the absolute zero (minus...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Call for Papers – ICNFT 2018, 5th International Conference on New Forming Technology

16.08.2017 | Event News

Sustainability is the business model of tomorrow

04.08.2017 | Event News

Clash of Realities 2017: Registration now open. International Conference at TH Köln

26.07.2017 | Event News

 
Latest News

Gold shines through properties of nano biosensors

17.08.2017 | Physics and Astronomy

Greenland ice flow likely to speed up: New data assert glaciers move over sediment, which gets more slippery as it gets wetter

17.08.2017 | Earth Sciences

Mars 2020 mission to use smart methods to seek signs of past life

17.08.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>