Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Drug discovery for Parkinson's disease: LCSB researchers grow neurons in 3-D

25.06.2015

The progressive loss of neurons in the brain of Parkinson's patients is slow yet inexorable. So far, there are no drugs that can halt this insidious process. Researchers at the Luxembourg Centre for Systems Biomedicine (LCSB) of the University of Luxembourg have now managed to grow the types of neurons affected starting from neuronal stem cells in a three-dimensional cell culture system.

The scientists working with Dr. Ronan Fleming of the LCSB research group Systems Biochemistry are confident this system could greatly facilitate the continuing search for therapeutic agents in future as it models the natural conditions in the brain more realistically than other systems available so far. It is also significantly cheaper to employ in the laboratory. The results were recently published in the journal "Lab on a Chip" (doi: 10.1039/C5LC00180C).


Neurons cultivated with the help of ordinary skin cells create a 3-D network on a chip.

Credit: (c) Edinson Lucumi Moreno, LCSB

Parkinson's disease is characterised in particular by the death of dopamine-producing neurons in the Substantia nigra of the midbrain. It is already possible to grow these dopaminergic neurons in cell cultures. "But most such cell cultures are two-dimensional, with the cells growing along the base of a petri dish, for example," group leader Fleming explains. "Instead, we have the neurons grow in a gel that yields a far better model of their natural, three-dimensional environment."

As the starting point for cultivating the target neurons, the scientists use ordinary skin cells. They convert these through conventional methods into induced pluripotent stem cells, or iPSCs for short. For the development of this technology Japanese scientist Shinya Yamanaka was awarded the Nobel Prize for Physiology or Medicine in 2012 together with John Gurdon.

"By adding suitable growth factors, the iPSCs can then be converted in a second step into neural stem cells," says Prof. Jens Schwamborn, head of the LCSB research group Developmental & Cellular Biology, which is responsible for the differentiation of the cells. "These are the starting cells we use in the microfluidic culture."

The researchers first mix the cells with a liquid, which they then fill into little test vessels called bioreactors. "You can imagine such a bioreactor as a tunnel separated down the middle by a flat barrier," LCSB researcher Edinson Lucumi Moreno, first author of the study, explains. "One side of the tunnel we load the liquid with the cells, where it hardens into a gel under controlled temperatures. The other side we load with a medium to which we can add nutrients and substances for further differentiation of the neuronal stem cells as required."

After only a few hours, the researchers already observe changes in the neuronal stem cells: The cells begin to form little protrusions, which develop over the following days into axons and dendrites - the long extensions typical of neurons. After 30 days, 91 percent of the cells are neurons, about 20 percent of which are the desired dopaminergic neurons. This has been confirmed in morphological and immunological tests.

One of the major advantages of this 3D cell culture system is that it can already be automated in its present form: The bioreactors are placed on commercially available plates that can be processed and read out by laboratory robots. "In drug development, dozens of chemical substances can therefore be tested for possible therapeutic effects in a single step," says Ronan Fleming. "Because we use far smaller amounts of substances than in conventional cell culture systems, the costs drop to about one tenth the usual."

A further advantage is that the bioreactors can be loaded with cells originating from the skin cells of individual Parkinson's patients. "This is an important step towards personalised drug development," Fleming asserts. As a next step, Fleming's team and their international collaborators want to study cells from patients and to test potential active pharmaceutical ingredients. Promising substances will then be tested in mice.

Media Contact

Sabine Mosch
sabine.mosch@uni.lu
352-466-644-6423

 @uni_lu

http://www.uni.lu 

Sabine Mosch | idw - Informationsdienst Wissenschaft

More articles from Life Sciences:

nachricht Nanoparticle Exposure Can Awaken Dormant Viruses in the Lungs
16.01.2017 | Helmholtz Zentrum München - Deutsches Forschungszentrum für Gesundheit und Umwelt

nachricht Cholera bacteria infect more effectively with a simple twist of shape
13.01.2017 | Princeton University

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Designing Architecture with Solar Building Envelopes

Among the general public, solar thermal energy is currently associated with dark blue, rectangular collectors on building roofs. Technologies are needed for aesthetically high quality architecture which offer the architect more room for manoeuvre when it comes to low- and plus-energy buildings. With the “ArKol” project, researchers at Fraunhofer ISE together with partners are currently developing two façade collectors for solar thermal energy generation, which permit a high degree of design flexibility: a strip collector for opaque façade sections and a solar thermal blind for transparent sections. The current state of the two developments will be presented at the BAU 2017 trade fair.

As part of the “ArKol – development of architecturally highly integrated façade collectors with heat pipes” project, Fraunhofer ISE together with its partners...

Im Focus: How to inflate a hardened concrete shell with a weight of 80 t

At TU Wien, an alternative for resource intensive formwork for the construction of concrete domes was developed. It is now used in a test dome for the Austrian Federal Railways Infrastructure (ÖBB Infrastruktur).

Concrete shells are efficient structures, but not very resource efficient. The formwork for the construction of concrete domes alone requires a high amount of...

Im Focus: Bacterial Pac Man molecule snaps at sugar

Many pathogens use certain sugar compounds from their host to help conceal themselves against the immune system. Scientists at the University of Bonn have now, in cooperation with researchers at the University of York in the United Kingdom, analyzed the dynamics of a bacterial molecule that is involved in this process. They demonstrate that the protein grabs onto the sugar molecule with a Pac Man-like chewing motion and holds it until it can be used. Their results could help design therapeutics that could make the protein poorer at grabbing and holding and hence compromise the pathogen in the host. The study has now been published in “Biophysical Journal”.

The cells of the mouth, nose and intestinal mucosa produce large quantities of a chemical called sialic acid. Many bacteria possess a special transport system...

Im Focus: Newly proposed reference datasets improve weather satellite data quality

UMD, NOAA collaboration demonstrates suitability of in-orbit datasets for weather satellite calibration

"Traffic and weather, together on the hour!" blasts your local radio station, while your smartphone knows the weather halfway across the world. A network of...

Im Focus: Repairing defects in fiber-reinforced plastics more efficiently

Fiber-reinforced plastics (FRP) are frequently used in the aeronautic and automobile industry. However, the repair of workpieces made of these composite materials is often less profitable than exchanging the part. In order to increase the lifetime of FRP parts and to make them more eco-efficient, the Laser Zentrum Hannover e.V. (LZH) and the Apodius GmbH want to combine a new measuring device for fiber layer orientation with an innovative laser-based repair process.

Defects in FRP pieces may be production or operation-related. Whether or not repair is cost-effective depends on the geometry of the defective area, the tools...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

12V, 48V, high-voltage – trends in E/E automotive architecture

10.01.2017 | Event News

2nd Conference on Non-Textual Information on 10 and 11 May 2017 in Hannover

09.01.2017 | Event News

Nothing will happen without batteries making it happen!

05.01.2017 | Event News

 
Latest News

Multiregional brain on a chip

16.01.2017 | Power and Electrical Engineering

New technology enables 5-D imaging in live animals, humans

16.01.2017 | Information Technology

Researchers develop environmentally friendly soy air filter

16.01.2017 | Power and Electrical Engineering

VideoLinks
B2B-VideoLinks
More VideoLinks >>>