Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Drug developed at Pitt proves effective against antibiotic-resistant 'superbugs'

10.12.2014

A treatment pioneered at the University of Pittsburgh Center for Vaccine Research (CVR) is far more effective than traditional antibiotics at inhibiting the growth of drug-resistant bacteria, including so-called "superbugs" resistant to almost all existing antibiotics, which plague hospitals and nursing homes.

The findings, announced online in the journal Antimicrobial Agents and Chemotherapy and funded by the National Institutes of Health, provide a needed boost to the field of antibiotic development, which has been limited in the last four decades and outpaced by the rise of drug-resistant bacterial strains.


This is an image of an engineered cationic antimicrobial peptide (eCAP) membrane.

Credit: Nicole Davison/UPMC

"Very few, if any, medical discoveries have had a larger impact on modern medicine than the discovery and development of antibiotics," said senior author Ronald C. Montelaro, Ph.D., professor and co-director of Pitt's CVR. "However, the success of these medical achievements is being threatened due to increasing frequency of antibiotic resistance. It is critical that we move forward with development of new defenses against the drug-resistant bacteria that threaten the lives of our most vulnerable patients."

Each year in the U.S., at least 2 million people are infected with drug-resistant bacteria, and at least 23,000 die as a direct result of these infections, according to the U.S. Centers for Disease Control and Prevention.

On the tail end of HIV surface protein, there is a sequence of amino acids that the virus uses to "punch into" and infect cells. Dr. Montelaro and his colleagues developed a synthetic and more efficient version of this sequence - called engineered cationic antimicrobial peptides, or "eCAPs"--that can be chemically synthesized in a laboratory setting.

The team tested the two leading eCAPs against a natural antimicrobial peptide (LL37) and a standard antibiotic (colistin), the latter being used as a last-resort antibiotic against multidrug resistant bacterial infections. The scientists performed the tests in a laboratory setting using 100 different bacterial strains isolated from the lungs of pediatric cystic fibrosis patients of Seattle Children's Hospital and 42 bacterial strains isolated from hospitalized adult patients at UPMC.

The natural human antimicrobial peptide LL37 and the colistin drug each inhibited growth of about 50 percent of the clinical isolates, indicating a high level of bacterial resistance to these drugs. In marked contrast, the two eCAPS inhibited growth in about 90 percent of the test bacterial strains.

"We were very impressed with the performance of the eCAPs when compared with some of the best existing drugs, including a natural antimicrobial peptide made by Mother Nature and an antibiotic of last resort," said Dr. Montelaro. "However, we still needed to know how long the eCAPs would be effective before the bacteria develop resistance."

The team challenged a highly infectious and pathogenic bacterium called Pseudomonas aeruginosa - which flourishes in medical equipment, such as catheters, and causes inflammation, sepsis and organ failure - with both the traditional drugs and eCAPs in the lab.

The bacterium developed resistance to the traditional drugs in as little as three days. In contrast, it took 25 to 30 days for the same bacterium to develop resistance to the eCAPs. In addition, the eCAPs worked just as effectively at killing Pseudomonas aeruginosa after it became resistant to the traditional drugs.

"We plan to continue developing the eCAPs in the lab and in animal models, with the intention of creating the least-toxic and most effective version possible so we can move them to clinical trials and help patients who have exhausted existing antibiotic options," said Dr. Montelaro.

Additional researchers on this study are Berthony Deslouches, M.D., Ph.D., Jonathan D. Steckbeck, Ph.D., M.B.A., Jodi K. Craigo, Ph.D., and Yohei Doi, M.D., all of Pitt; and Jane L. Burns, M.D., of Seattle Children's Research Institute.

This research was supported by NIH grants P30DK072506, R01AI104895, R21AI107302 and P30 DK089507, as well as funds from Pitt's Center for Vaccine Research and Cystic Fibrosis Research Center.

About the University of Pittsburgh Schools of the Health Sciences

The University of Pittsburgh Schools of the Health Sciences include the schools of Medicine, Nursing, Dental Medicine, Pharmacy, Health and Rehabilitation Sciences and the Graduate School of Public Health. The schools serve as the academic partner to the UPMC (University of Pittsburgh Medical Center). Together, their combined mission is to train tomorrow's health care specialists and biomedical scientists, engage in groundbreaking research that will advance understanding of the causes and treatments of disease and participate in the delivery of outstanding patient care. Since 1998, Pitt and its affiliated university faculty have ranked among the top 10 educational institutions in grant support from the National Institutes of Health. For additional information about the Schools of the Health Sciences, please visit http://www.health.pitt.edu .

http://www.upmc.com/media 

Allison Hydzik | EurekAlert!

More articles from Life Sciences:

nachricht Fine organic particles in the atmosphere are more often solid glass beads than liquid oil droplets
21.04.2017 | Max-Planck-Institut für Chemie

nachricht Study overturns seminal research about the developing nervous system
21.04.2017 | University of California - Los Angeles Health Sciences

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Deep inside Galaxy M87

The nearby, giant radio galaxy M87 hosts a supermassive black hole (BH) and is well-known for its bright jet dominating the spectrum over ten orders of magnitude in frequency. Due to its proximity, jet prominence, and the large black hole mass, M87 is the best laboratory for investigating the formation, acceleration, and collimation of relativistic jets. A research team led by Silke Britzen from the Max Planck Institute for Radio Astronomy in Bonn, Germany, has found strong indication for turbulent processes connecting the accretion disk and the jet of that galaxy providing insights into the longstanding problem of the origin of astrophysical jets.

Supermassive black holes form some of the most enigmatic phenomena in astrophysics. Their enormous energy output is supposed to be generated by the...

Im Focus: A Quantum Low Pass for Photons

Physicists in Garching observe novel quantum effect that limits the number of emitted photons.

The probability to find a certain number of photons inside a laser pulse usually corresponds to a classical distribution of independent events, the so-called...

Im Focus: Microprocessors based on a layer of just three atoms

Microprocessors based on atomically thin materials hold the promise of the evolution of traditional processors as well as new applications in the field of flexible electronics. Now, a TU Wien research team led by Thomas Müller has made a breakthrough in this field as part of an ongoing research project.

Two-dimensional materials, or 2D materials for short, are extremely versatile, although – or often more precisely because – they are made up of just one or a...

Im Focus: Quantum-physical Model System

Computer-assisted methods aid Heidelberg physicists in reproducing experiment with ultracold atoms

Two researchers at Heidelberg University have developed a model system that enables a better understanding of the processes in a quantum-physical experiment...

Im Focus: Glacier bacteria’s contribution to carbon cycling

Glaciers might seem rather inhospitable environments. However, they are home to a diverse and vibrant microbial community. It’s becoming increasingly clear that they play a bigger role in the carbon cycle than previously thought.

A new study, now published in the journal Nature Geoscience, shows how microbial communities in melting glaciers contribute to the Earth’s carbon cycle, a...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Expert meeting “Health Business Connect” will connect international medical technology companies

20.04.2017 | Event News

Wenn der Computer das Gehirn austrickst

18.04.2017 | Event News

7th International Conference on Crystalline Silicon Photovoltaics in Freiburg on April 3-5, 2017

03.04.2017 | Event News

 
Latest News

New quantum liquid crystals may play role in future of computers

21.04.2017 | Physics and Astronomy

A promising target for kidney fibrosis

21.04.2017 | Health and Medicine

Light rays from a supernova bent by the curvature of space-time around a galaxy

21.04.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>