Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Drug developed at Pitt proves effective against antibiotic-resistant 'superbugs'

10.12.2014

A treatment pioneered at the University of Pittsburgh Center for Vaccine Research (CVR) is far more effective than traditional antibiotics at inhibiting the growth of drug-resistant bacteria, including so-called "superbugs" resistant to almost all existing antibiotics, which plague hospitals and nursing homes.

The findings, announced online in the journal Antimicrobial Agents and Chemotherapy and funded by the National Institutes of Health, provide a needed boost to the field of antibiotic development, which has been limited in the last four decades and outpaced by the rise of drug-resistant bacterial strains.


This is an image of an engineered cationic antimicrobial peptide (eCAP) membrane.

Credit: Nicole Davison/UPMC

"Very few, if any, medical discoveries have had a larger impact on modern medicine than the discovery and development of antibiotics," said senior author Ronald C. Montelaro, Ph.D., professor and co-director of Pitt's CVR. "However, the success of these medical achievements is being threatened due to increasing frequency of antibiotic resistance. It is critical that we move forward with development of new defenses against the drug-resistant bacteria that threaten the lives of our most vulnerable patients."

Each year in the U.S., at least 2 million people are infected with drug-resistant bacteria, and at least 23,000 die as a direct result of these infections, according to the U.S. Centers for Disease Control and Prevention.

On the tail end of HIV surface protein, there is a sequence of amino acids that the virus uses to "punch into" and infect cells. Dr. Montelaro and his colleagues developed a synthetic and more efficient version of this sequence - called engineered cationic antimicrobial peptides, or "eCAPs"--that can be chemically synthesized in a laboratory setting.

The team tested the two leading eCAPs against a natural antimicrobial peptide (LL37) and a standard antibiotic (colistin), the latter being used as a last-resort antibiotic against multidrug resistant bacterial infections. The scientists performed the tests in a laboratory setting using 100 different bacterial strains isolated from the lungs of pediatric cystic fibrosis patients of Seattle Children's Hospital and 42 bacterial strains isolated from hospitalized adult patients at UPMC.

The natural human antimicrobial peptide LL37 and the colistin drug each inhibited growth of about 50 percent of the clinical isolates, indicating a high level of bacterial resistance to these drugs. In marked contrast, the two eCAPS inhibited growth in about 90 percent of the test bacterial strains.

"We were very impressed with the performance of the eCAPs when compared with some of the best existing drugs, including a natural antimicrobial peptide made by Mother Nature and an antibiotic of last resort," said Dr. Montelaro. "However, we still needed to know how long the eCAPs would be effective before the bacteria develop resistance."

The team challenged a highly infectious and pathogenic bacterium called Pseudomonas aeruginosa - which flourishes in medical equipment, such as catheters, and causes inflammation, sepsis and organ failure - with both the traditional drugs and eCAPs in the lab.

The bacterium developed resistance to the traditional drugs in as little as three days. In contrast, it took 25 to 30 days for the same bacterium to develop resistance to the eCAPs. In addition, the eCAPs worked just as effectively at killing Pseudomonas aeruginosa after it became resistant to the traditional drugs.

"We plan to continue developing the eCAPs in the lab and in animal models, with the intention of creating the least-toxic and most effective version possible so we can move them to clinical trials and help patients who have exhausted existing antibiotic options," said Dr. Montelaro.

Additional researchers on this study are Berthony Deslouches, M.D., Ph.D., Jonathan D. Steckbeck, Ph.D., M.B.A., Jodi K. Craigo, Ph.D., and Yohei Doi, M.D., all of Pitt; and Jane L. Burns, M.D., of Seattle Children's Research Institute.

This research was supported by NIH grants P30DK072506, R01AI104895, R21AI107302 and P30 DK089507, as well as funds from Pitt's Center for Vaccine Research and Cystic Fibrosis Research Center.

About the University of Pittsburgh Schools of the Health Sciences

The University of Pittsburgh Schools of the Health Sciences include the schools of Medicine, Nursing, Dental Medicine, Pharmacy, Health and Rehabilitation Sciences and the Graduate School of Public Health. The schools serve as the academic partner to the UPMC (University of Pittsburgh Medical Center). Together, their combined mission is to train tomorrow's health care specialists and biomedical scientists, engage in groundbreaking research that will advance understanding of the causes and treatments of disease and participate in the delivery of outstanding patient care. Since 1998, Pitt and its affiliated university faculty have ranked among the top 10 educational institutions in grant support from the National Institutes of Health. For additional information about the Schools of the Health Sciences, please visit http://www.health.pitt.edu .

http://www.upmc.com/media 

Allison Hydzik | EurekAlert!

More articles from Life Sciences:

nachricht A novel socio-ecological approach helps identifying suitable wolf habitats
17.02.2017 | Universität Zürich

nachricht New, ultra-flexible probes form reliable, scar-free integration with the brain
16.02.2017 | University of Texas at Austin

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Breakthrough with a chain of gold atoms

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

Im Focus: DNA repair: a new letter in the cell alphabet

Results reveal how discoveries may be hidden in scientific “blind spots”

Cells need to repair damaged DNA in our genes to prevent the development of cancer and other diseases. Our cells therefore activate and send “repair-proteins”...

Im Focus: Dresdner scientists print tomorrow’s world

The Fraunhofer IWS Dresden and Technische Universität Dresden inaugurated their jointly operated Center for Additive Manufacturing Dresden (AMCD) with a festive ceremony on February 7, 2017. Scientists from various disciplines perform research on materials, additive manufacturing processes and innovative technologies, which build up components in a layer by layer process. This technology opens up new horizons for component design and combinations of functions. For example during fabrication, electrical conductors and sensors are already able to be additively manufactured into components. They provide information about stress conditions of a product during operation.

The 3D-printing technology, or additive manufacturing as it is often called, has long made the step out of scientific research laboratories into industrial...

Im Focus: Mimicking nature's cellular architectures via 3-D printing

Research offers new level of control over the structure of 3-D printed materials

Nature does amazing things with limited design materials. Grass, for example, can support its own weight, resist strong wind loads, and recover after being...

Im Focus: Three Magnetic States for Each Hole

Nanometer-scale magnetic perforated grids could create new possibilities for computing. Together with international colleagues, scientists from the Helmholtz Zentrum Dresden-Rossendorf (HZDR) have shown how a cobalt grid can be reliably programmed at room temperature. In addition they discovered that for every hole ("antidot") three magnetic states can be configured. The results have been published in the journal "Scientific Reports".

Physicist Dr. Rantej Bali from the HZDR, together with scientists from Singapore and Australia, designed a special grid structure in a thin layer of cobalt in...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Booth and panel discussion – The Lindau Nobel Laureate Meetings at the AAAS 2017 Annual Meeting

13.02.2017 | Event News

Complex Loading versus Hidden Reserves

10.02.2017 | Event News

International Conference on Crystal Growth in Freiburg

09.02.2017 | Event News

 
Latest News

Switched-on DNA

20.02.2017 | Materials Sciences

Second cause of hidden hearing loss identified

20.02.2017 | Health and Medicine

Prospect for more effective treatment of nerve pain

20.02.2017 | Health and Medicine

VideoLinks
B2B-VideoLinks
More VideoLinks >>>