Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Drug Detectives

09.02.2015

A new screening method may be able to identify toxic drugs earlier in development

--A good drug is hard to design: to garner FDA approval and reach consumers, it must not only effectively treat a medical condition, but it must also do so without having side effects that outweigh its benefits.


Andersen Lab, Weil Cornell Medical College

Gramicidin, a membrane-spanning protein used to monitor lipid bilayer disruption in the Gramicidin-Based Fluorescence Assay.

Sometimes, toxic side effects aren’t discovered until fairly late in the drug development process, when substantial amounts of time and money have already been invested in clinical trials. Even though the pharmaceutical industry uses preclinical data and predictive algorithms to weed out drugs that are likely to fail because of toxicity, many still slip through the cracks.

Now, a group of researchers from Weill Cornell Medical College in New York City has devised a new drug screen that capitalizes on the tendency of toxic compounds to alter the properties of the lipid bilayer that encases cells. They will present their screening method at the 59th annual meeting of the Biophysical Society, held Feb. 7-11 in Baltimore, Md.

Changes to the properties of the lipid bilayer component of the cell membrane can alter the function of proteins embedded in the membrane -- proteins that regulate critical functions such as transport of materials in and out of the cell and communication with other cells.

The new screen, called the Gramicidin-Based Fluorescence Assay (GBFA), repurposes an assay previously developed by principal investigator Olaf Andersen and a former graduate student Helgi Ingólfsson. It tracks changes in the activity of a small protein (the gramicidin channel) coupled to a fluorescence signal as a way of monitoring changes in lipid bilayer properties, a correlate for toxicity.

"As we gathered data, we began to notice a trend: molecules that significantly affected lipid bilayer properties were often indiscriminate modifiers of membrane protein function and thus tended to have an array of off-target effects," said researcher Lea Sanford. That is, when compounds intended to influence a specific protein target also alter lipid bilayer properties, they may alter the function of numerous membrane proteins and thereby cause a cascade of usually unwanted off-target and side effects.

Sanford and her colleagues wanted to see whether changes in lipid bilayer properties were reliably correlated with a drug’s toxicity to cells, or cytotoxicity. To test the hypothesis, they did a blinded screen of 134 compounds provided by The Rockefeller University’s High-Throughput Screening Center. Indeed, the toxic compounds in the database, which had been characterized using high-content cytotoxicity screening, showed greater rates of fluorescence quenching. The greater a molecule’s bilayer-modifying effect (the faster the fluorescent signal decreased during the assay), the higher the likelihood it would be toxic. It appears that, as the team expected, the test could be used to identify probable cytotoxic drugs.

"This is our first study on toxicity and our results imply that the GBFA is a viable, cheap and straightforward option for predicting which compounds are likely to have off-target effects and potentially be cytotoxic, thus having the potential to indicate likely drug failures at an early stage in the development process," said Sanford. "We need to expand the library of compounds tested to more thoroughly vet the assay’s use in this way."

The researchers also emphasized that changes in bilayer properties are not inherently negative. In some cases, the off-target effects of a drug could make it useful for treating conditions other than the one for which it was originally developed.

"A molecule may be toxic for many reasons that do not involve the bilayer, but it is striking how increased bilayer activity tends to be associated with toxicity," noted Andersen. "The cool thing about this project is that it shows that lipid bilayers will continue to surprise us."

The poster, "Predicting Drug Toxicity: Early Detection of Likely Failures in Drug Development," by R. Lea Sanford, Wesley Chao, Jeanne Chiaravalli-Giganti, Antonio Luz, J. Fraser Glickman and Olaf S. Andersen, will be displayed Sunday, February 8, 2015, from 1:45 to 3:45 PM in Hall C of the Baltimore Convention Center. Abstract: http://tinyurl.com/pywqpoy

ABOUT THE MEETING

Each year, the Biophysical Society Annual Meeting brings together more than 6,500 researchers working in the multidisciplinary fields representing biophysics. With more than 3,600 poster presentations, over 200 exhibits, and more than 20 symposia, the BPS Annual Meeting is the largest meeting of biophysicists in the world. Despite its size, the meeting retains its small-meeting flavor through its subgroup symposia, platform sessions, social activities and committee programs. The 59th Annual Meeting will be held at the Baltimore Convention Center.

PRESS REGISTRATION

The Biophysical Society invites professional journalists, freelance science writers and public information officers to attend its Annual Meeting free of charge. For press registration, contact Ellen Weiss at or Jason Bardi at 240-535-4954.

QUICK LINKS

Main Meeting Page: http://tinyurl.com/k8yfvyq
Symposia: http://tinyurl.com/lrahzbu
Itinerary planner: http://tinyurl.com/kxpe272

ABOUT THE SOCIETY

The Biophysical Society, founded in 1958, is a professional, scientific Society established to encourage development and dissemination of knowledge in biophysics. The Society promotes growth in this expanding field through its annual meeting, bi-monthly journal, and committee and outreach activities. Its 9,000 members are located throughout the U.S. and the world, where they teach and conduct research in colleges, universities, laboratories, government agencies, and industry.

For more information on the Society, or the 2015 Annual Meeting, visit http://www.biophysics.org

Contact Information
Jason Socrates Bardi
+1 240-535-4954
jbardi@aip.org
@jasonbardi

Jason Socrates Bardi | newswise

More articles from Life Sciences:

nachricht Not of Divided Mind
19.01.2017 | Hertie-Institut für klinische Hirnforschung (HIH)

nachricht CRISPR meets single-cell sequencing in new screening method
19.01.2017 | CeMM Forschungszentrum für Molekulare Medizin der Österreichischen Akademie der Wissenschaften

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Traffic jam in empty space

New success for Konstanz physicists in studying the quantum vacuum

An important step towards a completely new experimental access to quantum physics has been made at University of Konstanz. The team of scientists headed by...

Im Focus: How gut bacteria can make us ill

HZI researchers decipher infection mechanisms of Yersinia and immune responses of the host

Yersiniae cause severe intestinal infections. Studies using Yersinia pseudotuberculosis as a model organism aim to elucidate the infection mechanisms of these...

Im Focus: Interfacial Superconductivity: Magnetic and superconducting order revealed simultaneously

Researchers from the University of Hamburg in Germany, in collaboration with colleagues from the University of Aarhus in Denmark, have synthesized a new superconducting material by growing a few layers of an antiferromagnetic transition-metal chalcogenide on a bismuth-based topological insulator, both being non-superconducting materials.

While superconductivity and magnetism are generally believed to be mutually exclusive, surprisingly, in this new material, superconducting correlations...

Im Focus: Studying fundamental particles in materials

Laser-driving of semimetals allows creating novel quasiparticle states within condensed matter systems and switching between different states on ultrafast time scales

Studying properties of fundamental particles in condensed matter systems is a promising approach to quantum field theory. Quasiparticles offer the opportunity...

Im Focus: Designing Architecture with Solar Building Envelopes

Among the general public, solar thermal energy is currently associated with dark blue, rectangular collectors on building roofs. Technologies are needed for aesthetically high quality architecture which offer the architect more room for manoeuvre when it comes to low- and plus-energy buildings. With the “ArKol” project, researchers at Fraunhofer ISE together with partners are currently developing two façade collectors for solar thermal energy generation, which permit a high degree of design flexibility: a strip collector for opaque façade sections and a solar thermal blind for transparent sections. The current state of the two developments will be presented at the BAU 2017 trade fair.

As part of the “ArKol – development of architecturally highly integrated façade collectors with heat pipes” project, Fraunhofer ISE together with its partners...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Sustainable Water use in Agriculture in Eastern Europe and Central Asia

19.01.2017 | Event News

12V, 48V, high-voltage – trends in E/E automotive architecture

10.01.2017 | Event News

2nd Conference on Non-Textual Information on 10 and 11 May 2017 in Hannover

09.01.2017 | Event News

 
Latest News

New Study Will Help Find the Best Locations for Thermal Power Stations in Iceland

19.01.2017 | Earth Sciences

Not of Divided Mind

19.01.2017 | Life Sciences

Molecule flash mob

19.01.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>