Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Drug Detectives

09.02.2015

A new screening method may be able to identify toxic drugs earlier in development

--A good drug is hard to design: to garner FDA approval and reach consumers, it must not only effectively treat a medical condition, but it must also do so without having side effects that outweigh its benefits.


Andersen Lab, Weil Cornell Medical College

Gramicidin, a membrane-spanning protein used to monitor lipid bilayer disruption in the Gramicidin-Based Fluorescence Assay.

Sometimes, toxic side effects aren’t discovered until fairly late in the drug development process, when substantial amounts of time and money have already been invested in clinical trials. Even though the pharmaceutical industry uses preclinical data and predictive algorithms to weed out drugs that are likely to fail because of toxicity, many still slip through the cracks.

Now, a group of researchers from Weill Cornell Medical College in New York City has devised a new drug screen that capitalizes on the tendency of toxic compounds to alter the properties of the lipid bilayer that encases cells. They will present their screening method at the 59th annual meeting of the Biophysical Society, held Feb. 7-11 in Baltimore, Md.

Changes to the properties of the lipid bilayer component of the cell membrane can alter the function of proteins embedded in the membrane -- proteins that regulate critical functions such as transport of materials in and out of the cell and communication with other cells.

The new screen, called the Gramicidin-Based Fluorescence Assay (GBFA), repurposes an assay previously developed by principal investigator Olaf Andersen and a former graduate student Helgi Ingólfsson. It tracks changes in the activity of a small protein (the gramicidin channel) coupled to a fluorescence signal as a way of monitoring changes in lipid bilayer properties, a correlate for toxicity.

"As we gathered data, we began to notice a trend: molecules that significantly affected lipid bilayer properties were often indiscriminate modifiers of membrane protein function and thus tended to have an array of off-target effects," said researcher Lea Sanford. That is, when compounds intended to influence a specific protein target also alter lipid bilayer properties, they may alter the function of numerous membrane proteins and thereby cause a cascade of usually unwanted off-target and side effects.

Sanford and her colleagues wanted to see whether changes in lipid bilayer properties were reliably correlated with a drug’s toxicity to cells, or cytotoxicity. To test the hypothesis, they did a blinded screen of 134 compounds provided by The Rockefeller University’s High-Throughput Screening Center. Indeed, the toxic compounds in the database, which had been characterized using high-content cytotoxicity screening, showed greater rates of fluorescence quenching. The greater a molecule’s bilayer-modifying effect (the faster the fluorescent signal decreased during the assay), the higher the likelihood it would be toxic. It appears that, as the team expected, the test could be used to identify probable cytotoxic drugs.

"This is our first study on toxicity and our results imply that the GBFA is a viable, cheap and straightforward option for predicting which compounds are likely to have off-target effects and potentially be cytotoxic, thus having the potential to indicate likely drug failures at an early stage in the development process," said Sanford. "We need to expand the library of compounds tested to more thoroughly vet the assay’s use in this way."

The researchers also emphasized that changes in bilayer properties are not inherently negative. In some cases, the off-target effects of a drug could make it useful for treating conditions other than the one for which it was originally developed.

"A molecule may be toxic for many reasons that do not involve the bilayer, but it is striking how increased bilayer activity tends to be associated with toxicity," noted Andersen. "The cool thing about this project is that it shows that lipid bilayers will continue to surprise us."

The poster, "Predicting Drug Toxicity: Early Detection of Likely Failures in Drug Development," by R. Lea Sanford, Wesley Chao, Jeanne Chiaravalli-Giganti, Antonio Luz, J. Fraser Glickman and Olaf S. Andersen, will be displayed Sunday, February 8, 2015, from 1:45 to 3:45 PM in Hall C of the Baltimore Convention Center. Abstract: http://tinyurl.com/pywqpoy

ABOUT THE MEETING

Each year, the Biophysical Society Annual Meeting brings together more than 6,500 researchers working in the multidisciplinary fields representing biophysics. With more than 3,600 poster presentations, over 200 exhibits, and more than 20 symposia, the BPS Annual Meeting is the largest meeting of biophysicists in the world. Despite its size, the meeting retains its small-meeting flavor through its subgroup symposia, platform sessions, social activities and committee programs. The 59th Annual Meeting will be held at the Baltimore Convention Center.

PRESS REGISTRATION

The Biophysical Society invites professional journalists, freelance science writers and public information officers to attend its Annual Meeting free of charge. For press registration, contact Ellen Weiss at or Jason Bardi at 240-535-4954.

QUICK LINKS

Main Meeting Page: http://tinyurl.com/k8yfvyq
Symposia: http://tinyurl.com/lrahzbu
Itinerary planner: http://tinyurl.com/kxpe272

ABOUT THE SOCIETY

The Biophysical Society, founded in 1958, is a professional, scientific Society established to encourage development and dissemination of knowledge in biophysics. The Society promotes growth in this expanding field through its annual meeting, bi-monthly journal, and committee and outreach activities. Its 9,000 members are located throughout the U.S. and the world, where they teach and conduct research in colleges, universities, laboratories, government agencies, and industry.

For more information on the Society, or the 2015 Annual Meeting, visit http://www.biophysics.org

Contact Information
Jason Socrates Bardi
+1 240-535-4954
jbardi@aip.org
@jasonbardi

Jason Socrates Bardi | newswise

More articles from Life Sciences:

nachricht Symbiotic bacteria: from hitchhiker to beetle bodyguard
28.04.2017 | Johannes Gutenberg-Universität Mainz

nachricht Nose2Brain – Better Therapy for Multiple Sclerosis
28.04.2017 | Fraunhofer-Institut für Grenzflächen- und Bioverfahrenstechnik IGB

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Making lightweight construction suitable for series production

More and more automobile companies are focusing on body parts made of carbon fiber reinforced plastics (CFRP). However, manufacturing and repair costs must be further reduced in order to make CFRP more economical in use. Together with the Volkswagen AG and five other partners in the project HolQueSt 3D, the Laser Zentrum Hannover e.V. (LZH) has developed laser processes for the automatic trimming, drilling and repair of three-dimensional components.

Automated manufacturing processes are the basis for ultimately establishing the series production of CFRP components. In the project HolQueSt 3D, the LZH has...

Im Focus: Wonder material? Novel nanotube structure strengthens thin films for flexible electronics

Reflecting the structure of composites found in nature and the ancient world, researchers at the University of Illinois at Urbana-Champaign have synthesized thin carbon nanotube (CNT) textiles that exhibit both high electrical conductivity and a level of toughness that is about fifty times higher than copper films, currently used in electronics.

"The structural robustness of thin metal films has significant importance for the reliable operation of smart skin and flexible electronics including...

Im Focus: Deep inside Galaxy M87

The nearby, giant radio galaxy M87 hosts a supermassive black hole (BH) and is well-known for its bright jet dominating the spectrum over ten orders of magnitude in frequency. Due to its proximity, jet prominence, and the large black hole mass, M87 is the best laboratory for investigating the formation, acceleration, and collimation of relativistic jets. A research team led by Silke Britzen from the Max Planck Institute for Radio Astronomy in Bonn, Germany, has found strong indication for turbulent processes connecting the accretion disk and the jet of that galaxy providing insights into the longstanding problem of the origin of astrophysical jets.

Supermassive black holes form some of the most enigmatic phenomena in astrophysics. Their enormous energy output is supposed to be generated by the...

Im Focus: A Quantum Low Pass for Photons

Physicists in Garching observe novel quantum effect that limits the number of emitted photons.

The probability to find a certain number of photons inside a laser pulse usually corresponds to a classical distribution of independent events, the so-called...

Im Focus: Microprocessors based on a layer of just three atoms

Microprocessors based on atomically thin materials hold the promise of the evolution of traditional processors as well as new applications in the field of flexible electronics. Now, a TU Wien research team led by Thomas Müller has made a breakthrough in this field as part of an ongoing research project.

Two-dimensional materials, or 2D materials for short, are extremely versatile, although – or often more precisely because – they are made up of just one or a...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Fighting drug resistant tuberculosis – InfectoGnostics meets MYCO-NET² partners in Peru

28.04.2017 | Event News

Expert meeting “Health Business Connect” will connect international medical technology companies

20.04.2017 | Event News

Wenn der Computer das Gehirn austrickst

18.04.2017 | Event News

 
Latest News

Wireless power can drive tiny electronic devices in the GI tract

28.04.2017 | Medical Engineering

Ice cave in Transylvania yields window into region's past

28.04.2017 | Earth Sciences

Nose2Brain – Better Therapy for Multiple Sclerosis

28.04.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>