Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Driving tumour cells to their death

24.03.2015

Researchers from the University of Freiburg help discover a new approach to treating B cell acute lymphoblastic leukaemia

B cell acute lymphoblastic leukaemia, or B-ALLis the most common tumour disease in children and also occurs in adults. It develops when signalling pathways in immature B cells, or pre-B cells, are dysregulated. Prof. Dr. Markus Müschen from the University of California in San Francisco, USA, and his team worked together with the BIOSS researchers Prof. Dr. Hassan Jumaa and Prof. Dr. Michael Reth to find a new approach for treating the B-ALL tumour disease. Their studies could change the way we think about clinical therapies for treating these tumour diseases. The scientists have published their research in the journal Nature.


Please see the article

B cells are white blood cells that produce antibodies against antigens, namely substances which the immune system recognises as foreign. Normal B cell development and maturation is regulated by a balance between kinase and phosphatase enzymes. These enzymes phosphorylate or de-phosphorylate the signalling subunits of the B cell antigen receptors (BCR).

This means that the kinases add phosphate groups to the BCR, while the phosphatases remove them. Only if it has been phosphorylated by kinases is a BCR completely active and signals to the B cell that there is a foreign substance. This means that the kinases and phosphatases affect the receptor’s capacity to send signals.

In B-ALL tumour cells, certain kinase enzymes, such as the Abelson tyrosine kinase (ABL), are altered and act as oncogenes, spurring the growth of tumours independently of the BCR. The B cells then continue to divide although they do not function. That is why this disease is treated with agents that inhibit the ABL kinase. However, resistant ABL mutants still often develop and the tumour continues to grow.

The American and German team investigated how BCR signalling in tumour cells is regulated. They discovered that the signalling subunits of the BCR in B-ALL tumour cells are hardly phosphorylated and that there is a higher number of inhibiting receptors on the cell’s surface. Because these receptors bind phosphatases, they prevent the BCR from becoming active. When the researchers shut off the inhibiting receptors or the associated phosphatases, the B-ALL tumour cells died instantly.

The researchers were also able to demonstrate in an animal experiment how a phosphatase inhibitor prevented tumours from spreading. By inhibiting the phosphatases, they essentially freed the BCR signalling pathways that the ABL kinase had been supressing. Because a B cell that has a disproportionate amount of active BCR receptors no longer has a balance of kinases and phosphatases, this form of therapy thus leads to cell death, or what is known as apoptosis.

Future ALL treatments could aim at inhibiting the phosphatases instead of the ABL kinases and thereby strengthen BCR signals. Reth said, "In the last few years, we have investigated at BIOSS the significance of the balance between kinases and phosphatases for the normal development of B lymph nodes. Now we’ve discovered that this also plays a role in the development and treatment of B cell tumours.”

Reth is the scientific director of the cluster of excellence BIOSS Centre for Biological Signalling Studies. He is also a professor at the Institute of Biology III at the University of Freiburg and head of a research group at the Max Planck Institute of Immunobiology and Epigenetics in Freiburg. Jumaa is now a professor at the Institute of Immunobiology at the University of Ulm and was a member of the BIOSS Centre for Biological Signalling Studies.

Original Publication:

Zhengshan Chen, Seyedmehdi Shojaee, Maike Buchner, Huimin Geng, Jae Woong Lee, Lars Klemm, Björn Titz, Thomas G. Graeber, Eugene Park, Ying Xim Tan, Anne Satterthwaite, Elisabeth Paietta, Stephen P. Hunger, Chery L Willman, Ari Melnick, Mignon L Loh, Jae U. Jung, John E. Coligan, Silvia Bolland, Tak W. Mak, Andre Limnander, Hassan Jumaa, Michael Reth, Arthur Weiss, Clifford A. Lowell and Markus Müschen (2015). Signaling thresholds and negative B cell selection in acute lymphoblastic leukemia. Nature. DOI: 10.1038/nature14231


Contact:
Prof. Dr. Michael Reth
BIOSS Centre for Biological Signalling Studies
University of Freiburg
Phone: +49 (0)761 / 203 - 97663
E-Mail: michael.reth@bioss.uni-freiburg.de

Rudolf-Werner Dreier | University of Freiburg
Further information:
https://www.pr.uni-freiburg.de/pm/2015/pm.2015-03-24.42-en?set_language=en

More articles from Life Sciences:

nachricht One step closer to reality
20.04.2018 | Max-Planck-Institut für Entwicklungsbiologie

nachricht The dark side of cichlid fish: from cannibal to caregiver
20.04.2018 | Veterinärmedizinische Universität Wien

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Spider silk key to new bone-fixing composite

University of Connecticut researchers have created a biodegradable composite made of silk fibers that can be used to repair broken load-bearing bones without the complications sometimes presented by other materials.

Repairing major load-bearing bones such as those in the leg can be a long and uncomfortable process.

Im Focus: Writing and deleting magnets with lasers

Study published in the journal ACS Applied Materials & Interfaces is the outcome of an international effort that included teams from Dresden and Berlin in Germany, and the US.

Scientists at the Helmholtz-Zentrum Dresden-Rossendorf (HZDR) together with colleagues from the Helmholtz-Zentrum Berlin (HZB) and the University of Virginia...

Im Focus: Gamma-ray flashes from plasma filaments

Novel highly efficient and brilliant gamma-ray source: Based on model calculations, physicists of the Max PIanck Institute for Nuclear Physics in Heidelberg propose a novel method for an efficient high-brilliance gamma-ray source. A giant collimated gamma-ray pulse is generated from the interaction of a dense ultra-relativistic electron beam with a thin solid conductor. Energetic gamma-rays are copiously produced as the electron beam splits into filaments while propagating across the conductor. The resulting gamma-ray energy and flux enable novel experiments in nuclear and fundamental physics.

The typical wavelength of light interacting with an object of the microcosm scales with the size of this object. For atoms, this ranges from visible light to...

Im Focus: Basel researchers succeed in cultivating cartilage from stem cells

Stable joint cartilage can be produced from adult stem cells originating from bone marrow. This is made possible by inducing specific molecular processes occurring during embryonic cartilage formation, as researchers from the University and University Hospital of Basel report in the scientific journal PNAS.

Certain mesenchymal stem/stromal cells from the bone marrow of adults are considered extremely promising for skeletal tissue regeneration. These adult stem...

Im Focus: Like a wedge in a hinge

Researchers lay groundwork to tailor drugs for new targets in cancer therapy

In the fight against cancer, scientists are developing new drugs to hit tumor cells at so far unused weak points. Such a “sore spot” is the protein complex...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

Invitation to the upcoming "Current Topics in Bioinformatics: Big Data in Genomics and Medicine"

13.04.2018 | Event News

Unique scope of UV LED technologies and applications presented in Berlin: ICULTA-2018

12.04.2018 | Event News

IWOLIA: A conference bringing together German Industrie 4.0 and French Industrie du Futur

09.04.2018 | Event News

 
Latest News

Magnetic nano-imaging on a table top

20.04.2018 | Physics and Astronomy

Start of work for the world's largest electric truck

20.04.2018 | Interdisciplinary Research

Atoms may hum a tune from grand cosmic symphony

20.04.2018 | Physics and Astronomy

VideoLinks
Science & Research
Overview of more VideoLinks >>>