Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Dresden scientists make an important contribution to decoding the language of cells

27.01.2016

PD Dr. Andreas Androutsellis-Theotokis, PhD, Dr. Jimmy Masjkur and Dr. Steven W. Poser are stem cell researchers at the Carl Gustav Carus University Hospital in Dresden. They have shown that pancreatic islet cells and neural stem cells interpret signals in their environment in a similar manner. This may make it possible to manipulate cells in such a way that they repair tissue damage and stimulate regeneration. This could lead to new approaches to the treatment of metabolic disease and diabetes. The result of this project was recently published in Diabetes, titled: Endocrine Pancreas Development and Regeneration: Noncanonical Ideas From Neural Stem Cell Biology (DOI: 10.2337/db15-1099).

Neural stem cells possess extraordinary abilities: They can multiply, fall into a sort of hibernation (“quiescence”) or differentiate into mature cell types with a very wide variety of functions. But how do neural stem cells manage to be so flexible?


PD Dr. Andreas Androutsellis-Theotokis, PhD (left), and Dr. Steven W. Poser (right) are stem cell researchers at the Carl Gustav Carus University Hospital in Dresden.

Dresden University Medicine / Konrad Kästner

All cells possess signal pathways, which they use to sense their immediate environment and react to it. What is decisive is how each cell type interprets the signals it receives. It is a bit like people who may speak the same language but interpret some words differently, as they are using different dialects.

The scientists must then decode how stem cells interpret the different signals from their environment - or which “dialect” they understand - and whether you can use this specifically to talk cells into regenerating damaged tissue.

PD Dr. Andreas Androutsellis Theotokis, PhD, Dr. Jimmy Masjkur and Dr. Steven W. Poser are stem cell researchers in the Department of Medicine and the Third Outpatient Clinic at Dresden University Hospital, directed by Professor Stefan R. Bornstein MD. They have now discovered such a molecular “dialect”, which they call the STAT3-Ser/Hes3 signaling axis. What makes this so fascinating is that this signaling axis is not only used by stem cells, but also by some other cells that are also capable of multiplying and differentiating into other cell types.

These include the pancreatic islet cells, which produce various endocrine hormones, including insulin. The pancreas is a highly plastic organ and can undergo complex changes during homeostasis (equilibrium) and regeneration.

The insight that islet cells use the same signal pathways as stem cells that can contribute to regeneration could lead to new approaches to the therapy of diabetes. This is because maintaining and regenerating islet cells is important in diabetes research.

Thus, stem cell research has increased our understanding of the signal pathways needed for regeneration. The signal pathways in neural stem cells can serve as a “blueprint” in identifying new molecular mechanisms in the biology of the pancreas.

The result of this project was recently published in Diabetes, titled: Endocrine Pancreas Development and Regeneration: Noncanonical Ideas From Neural Stem Cell Biology (DOI: 10.2337/db15-1099).

Contact:
Universitätsklinikum Carl Gustav Carus Dresden
Technische Universität Dresden
Medizinische Klinik und Poliklinik III
PD. Dr. Andreas Androutsellis-Theotokis, PhD
Tel.: +49 0351 796 5690
Fax: +49 0351 458 6398
E-Mail: andreas.theotokis@uniklinkum-dresden.de

Weitere Informationen:

http://www.uniklinikum-dresden.de/mk3
http://diabetes.diabetesjournals.org/content/65/2/314.abstract

Konrad Kästner | idw - Informationsdienst Wissenschaft

More articles from Life Sciences:

nachricht Parallel computation provides deeper insight into brain function
27.03.2017 | Okinawa Institute of Science and Technology (OIST) Graduate University

nachricht Big data approach to predict protein structure
27.03.2017 | Karlsruher Institut für Technologie (KIT)

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Giant Magnetic Fields in the Universe

Astronomers from Bonn and Tautenburg in Thuringia (Germany) used the 100-m radio telescope at Effelsberg to observe several galaxy clusters. At the edges of these large accumulations of dark matter, stellar systems (galaxies), hot gas, and charged particles, they found magnetic fields that are exceptionally ordered over distances of many million light years. This makes them the most extended magnetic fields in the universe known so far.

The results will be published on March 22 in the journal „Astronomy & Astrophysics“.

Galaxy clusters are the largest gravitationally bound structures in the universe. With a typical extent of about 10 million light years, i.e. 100 times the...

Im Focus: Tracing down linear ubiquitination

Researchers at the Goethe University Frankfurt, together with partners from the University of Tübingen in Germany and Queen Mary University as well as Francis Crick Institute from London (UK) have developed a novel technology to decipher the secret ubiquitin code.

Ubiquitin is a small protein that can be linked to other cellular proteins, thereby controlling and modulating their functions. The attachment occurs in many...

Im Focus: Perovskite edges can be tuned for optoelectronic performance

Layered 2D material improves efficiency for solar cells and LEDs

In the eternal search for next generation high-efficiency solar cells and LEDs, scientists at Los Alamos National Laboratory and their partners are creating...

Im Focus: Polymer-coated silicon nanosheets as alternative to graphene: A perfect team for nanoelectronics

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are less stable. Now researchers at the Technical University of Munich (TUM) have, for the first time ever, produced a composite material combining silicon nanosheets and a polymer that is both UV-resistant and easy to process. This brings the scientists a significant step closer to industrial applications like flexible displays and photosensors.

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are...

Im Focus: Researchers Imitate Molecular Crowding in Cells

Enzymes behave differently in a test tube compared with the molecular scrum of a living cell. Chemists from the University of Basel have now been able to simulate these confined natural conditions in artificial vesicles for the first time. As reported in the academic journal Small, the results are offering better insight into the development of nanoreactors and artificial organelles.

Enzymes behave differently in a test tube compared with the molecular scrum of a living cell. Chemists from the University of Basel have now been able to...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

International Land Use Symposium ILUS 2017: Call for Abstracts and Registration open

20.03.2017 | Event News

CONNECT 2017: International congress on connective tissue

14.03.2017 | Event News

ICTM Conference: Turbine Construction between Big Data and Additive Manufacturing

07.03.2017 | Event News

 
Latest News

Big data approach to predict protein structure

27.03.2017 | Life Sciences

Parallel computation provides deeper insight into brain function

27.03.2017 | Life Sciences

Weather extremes: Humans likely influence giant airstreams

27.03.2017 | Earth Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>