Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Dresden scientists make an important contribution to decoding the language of cells

27.01.2016

PD Dr. Andreas Androutsellis-Theotokis, PhD, Dr. Jimmy Masjkur and Dr. Steven W. Poser are stem cell researchers at the Carl Gustav Carus University Hospital in Dresden. They have shown that pancreatic islet cells and neural stem cells interpret signals in their environment in a similar manner. This may make it possible to manipulate cells in such a way that they repair tissue damage and stimulate regeneration. This could lead to new approaches to the treatment of metabolic disease and diabetes. The result of this project was recently published in Diabetes, titled: Endocrine Pancreas Development and Regeneration: Noncanonical Ideas From Neural Stem Cell Biology (DOI: 10.2337/db15-1099).

Neural stem cells possess extraordinary abilities: They can multiply, fall into a sort of hibernation (“quiescence”) or differentiate into mature cell types with a very wide variety of functions. But how do neural stem cells manage to be so flexible?


PD Dr. Andreas Androutsellis-Theotokis, PhD (left), and Dr. Steven W. Poser (right) are stem cell researchers at the Carl Gustav Carus University Hospital in Dresden.

Dresden University Medicine / Konrad Kästner

All cells possess signal pathways, which they use to sense their immediate environment and react to it. What is decisive is how each cell type interprets the signals it receives. It is a bit like people who may speak the same language but interpret some words differently, as they are using different dialects.

The scientists must then decode how stem cells interpret the different signals from their environment - or which “dialect” they understand - and whether you can use this specifically to talk cells into regenerating damaged tissue.

PD Dr. Andreas Androutsellis Theotokis, PhD, Dr. Jimmy Masjkur and Dr. Steven W. Poser are stem cell researchers in the Department of Medicine and the Third Outpatient Clinic at Dresden University Hospital, directed by Professor Stefan R. Bornstein MD. They have now discovered such a molecular “dialect”, which they call the STAT3-Ser/Hes3 signaling axis. What makes this so fascinating is that this signaling axis is not only used by stem cells, but also by some other cells that are also capable of multiplying and differentiating into other cell types.

These include the pancreatic islet cells, which produce various endocrine hormones, including insulin. The pancreas is a highly plastic organ and can undergo complex changes during homeostasis (equilibrium) and regeneration.

The insight that islet cells use the same signal pathways as stem cells that can contribute to regeneration could lead to new approaches to the therapy of diabetes. This is because maintaining and regenerating islet cells is important in diabetes research.

Thus, stem cell research has increased our understanding of the signal pathways needed for regeneration. The signal pathways in neural stem cells can serve as a “blueprint” in identifying new molecular mechanisms in the biology of the pancreas.

The result of this project was recently published in Diabetes, titled: Endocrine Pancreas Development and Regeneration: Noncanonical Ideas From Neural Stem Cell Biology (DOI: 10.2337/db15-1099).

Contact:
Universitätsklinikum Carl Gustav Carus Dresden
Technische Universität Dresden
Medizinische Klinik und Poliklinik III
PD. Dr. Andreas Androutsellis-Theotokis, PhD
Tel.: +49 0351 796 5690
Fax: +49 0351 458 6398
E-Mail: andreas.theotokis@uniklinkum-dresden.de

Weitere Informationen:

http://www.uniklinikum-dresden.de/mk3
http://diabetes.diabetesjournals.org/content/65/2/314.abstract

Konrad Kästner | idw - Informationsdienst Wissenschaft

More articles from Life Sciences:

nachricht Making fuel out of thick air
08.12.2017 | DOE/Argonne National Laboratory

nachricht ‘Spying’ on the hidden geometry of complex networks through machine intelligence
08.12.2017 | Technische Universität Dresden

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Scientists channel graphene to understand filtration and ion transport into cells

Tiny pores at a cell's entryway act as miniature bouncers, letting in some electrically charged atoms--ions--but blocking others. Operating as exquisitely sensitive filters, these "ion channels" play a critical role in biological functions such as muscle contraction and the firing of brain cells.

To rapidly transport the right ions through the cell membrane, the tiny channels rely on a complex interplay between the ions and surrounding molecules,...

Im Focus: Towards data storage at the single molecule level

The miniaturization of the current technology of storage media is hindered by fundamental limits of quantum mechanics. A new approach consists in using so-called spin-crossover molecules as the smallest possible storage unit. Similar to normal hard drives, these special molecules can save information via their magnetic state. A research team from Kiel University has now managed to successfully place a new class of spin-crossover molecules onto a surface and to improve the molecule’s storage capacity. The storage density of conventional hard drives could therefore theoretically be increased by more than one hundred fold. The study has been published in the scientific journal Nano Letters.

Over the past few years, the building blocks of storage media have gotten ever smaller. But further miniaturization of the current technology is hindered by...

Im Focus: Successful Mechanical Testing of Nanowires

With innovative experiments, researchers at the Helmholtz-Zentrums Geesthacht and the Technical University Hamburg unravel why tiny metallic structures are extremely strong

Light-weight and simultaneously strong – porous metallic nanomaterials promise interesting applications as, for instance, for future aeroplanes with enhanced...

Im Focus: Virtual Reality for Bacteria

An interdisciplinary group of researchers interfaced individual bacteria with a computer to build a hybrid bio-digital circuit - Study published in Nature Communications

Scientists at the Institute of Science and Technology Austria (IST Austria) have managed to control the behavior of individual bacteria by connecting them to a...

Im Focus: A space-time sensor for light-matter interactions

Physicists in the Laboratory for Attosecond Physics (run jointly by LMU Munich and the Max Planck Institute for Quantum Optics) have developed an attosecond electron microscope that allows them to visualize the dispersion of light in time and space, and observe the motions of electrons in atoms.

The most basic of all physical interactions in nature is that between light and matter. This interaction takes place in attosecond times (i.e. billionths of a...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

See, understand and experience the work of the future

11.12.2017 | Event News

Innovative strategies to tackle parasitic worms

08.12.2017 | Event News

AKL’18: The opportunities and challenges of digitalization in the laser industry

07.12.2017 | Event News

 
Latest News

Midwife and signpost for photons

11.12.2017 | Physics and Astronomy

How do megacities impact coastal seas? Searching for evidence in Chinese marginal seas

11.12.2017 | Earth Sciences

PhoxTroT: Optical Interconnect Technologies Revolutionized Data Centers and HPC Systems

11.12.2017 | Information Technology

VideoLinks
B2B-VideoLinks
More VideoLinks >>>