Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:


Dopamine leaves its mark in brain scans


BOLD signals in functional magnetic resonance imaging do not always reflect what nerve cells are doing

Researchers use functional magnetic resonance imaging (fMRI) to identify which areas of the brain are active during specific tasks.

Dopamine alters the so-called BOLD signal in MRI:

Left: If the visual cortex of the brain is active, the BOLD signal increases without dopamine. The activities of gamma waves, individual groups of nerve cells (MUA) as well as the blood flow in the area (CBF) also increase.

Centre: Under the influence of dopamine, the BOLD signal decreases. The gamma-waves and the activity of the nerve cells, however, remain constant. The blood flow even increases.

Right: Active regions (red) in the visual cortex of the brain.

© MPI f. Biological Cybernetics / D. Zaldivar

The method reveals areas of the brain, in which energy use and hence oxygen content of the blood changes, thus indirectly showing which cell-populations are particularly active at a given moment.

Researchers from the Max Planck Institute for Biological Cybernetics in Tübingen now demonstrate that activity induced by signalling molecules such as dopamine may yield hitherto unpredictable up or down modulations of the fMRI signals, with the result that the neural and vascular responses dissociate. In such cases, far more precise data can be obtained when fMRI is combined with concurrent measurements of cerebral blood flow.

When you work hard, you breathe heavily. The same applies to nerve cells. When neurons fire, they consume more oxygen that is being delivered through blood. To ensure that no deficiency occurs, an oversupply of oxygenated blood is immediately transported to active regions of the brain. As a result, the oxygen content of the blood rises in those areas. In a magnetic resonance -scanner, this process is measured in the form of a blood oxygenation level dependent (BOLD) signal. When the activity of nerve cells increases, the BOLD signal increases too - in theory.

However, external influences such as mood, age, drugs, and food can alter BOLD signals and thereby change the interpretation of fMRI results. Moreover, the results are also affected by different brain states such as attention, memory and reward. “There is no absolute correlation between neuronal activity and BOLD signals.

Consequently, our ability to interpret the signals from fMRI scans is limited,” says Daniel Zaldivar of the Max Planck Institute for Biological Cybernetics, describing the motivation starting point of his research. Together with his colleagues, he studied how nerve cells in the visual cortex of macaque monkeys respond to visual stimuli when the brain is simultaneously under the influence of dopamine. The surprising result: although the activity of the nerve cells increases, the BOLD signal decreases by about 50 percent. This can lead the viewer of a brain scan to erroneously conclude that these neurons are less active.

“Dopamine presumably causes active cells to consume more oxygen than can be delivered,” says Zaldivar. Paradoxically, dopamine ramps up neurons’ activity to such a degree that the BOLD signal shows exactly the opposite of what is really happening. Under the influence of dopamine and probably other neuromodulators, changes in the BOLD signal alone are therefore not sufficient to draw conclusions about the activity of neuronal cells.

Measurements of cerebral blood flow in combination with BOLD and neurophysiology offer better insight into the changes of energy metabolism and help to draw better conclusion about the neuronal cells activity. That is because cerebral blood flow provides more direct information about the delivery of oxygen. Interestingly, Zaldivar and colleges found that under the influence of dopamine, blood flow increased. This results lead to the conclusion that the increase along with the neural activity is driven by increased energy use.

"If we can improve our understanding of how BOLD signals change under the influence of neuromodulators, we may be able to interpret brain scans better and detect problems at an earlier stage,” says Zaldivar. In schizophrenia patients, for example, the dopamine system in the brain is poorly regulated. If scientists knew what impact neuromodulators such as dopamine have on brain scan images, it might be possible to diagnose such illnesses earlier. “Before drawing conclusions about neuronal activity from BOLD signals, we first need to know what influence neuromodulators have on the images,” says Zaldivar.


Prof. Dr. Nikos Logothetis
Max Planck Institute for Biological Cybernetics, Tübingen

Phone: +49 7071 601-651


Dr. Daniel Zaldivar
Max Planck Institute for Biological Cybernetics, Tübingen

Phone: +49 7071 601-657


Dr. Jozien Goense

Institute of Neuroscience & Psychology
University of Glasgow


Original publication
Daniel Zaldivar, Alexander Rauch, Kevin Whittingstall, Nikos K. Logothetis, Jozien Goense

Dopamine-induced dissociation of BOLD and neural activity in macaque visual cortex

Current Biology, 20 November 2014

Prof. Dr. Nikos Logothetis | Max-Planck-Institute

More articles from Life Sciences:

nachricht First time-lapse footage of cell activity during limb regeneration
25.10.2016 | eLife

nachricht Phenotype at the push of a button
25.10.2016 | Institut für Pflanzenbiochemie

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Etching Microstructures with Lasers

Ultrafast lasers have introduced new possibilities in engraving ultrafine structures, and scientists are now also investigating how to use them to etch microstructures into thin glass. There are possible applications in analytics (lab on a chip) and especially in electronics and the consumer sector, where great interest has been shown.

This new method was born of a surprising phenomenon: irradiating glass in a particular way with an ultrafast laser has the effect of making the glass up to a...

Im Focus: Light-driven atomic rotations excite magnetic waves

Terahertz excitation of selected crystal vibrations leads to an effective magnetic field that drives coherent spin motion

Controlling functional properties by light is one of the grand goals in modern condensed matter physics and materials science. A new study now demonstrates how...

Im Focus: New 3-D wiring technique brings scalable quantum computers closer to reality

Researchers from the Institute for Quantum Computing (IQC) at the University of Waterloo led the development of a new extensible wiring technique capable of controlling superconducting quantum bits, representing a significant step towards to the realization of a scalable quantum computer.

"The quantum socket is a wiring method that uses three-dimensional wires based on spring-loaded pins to address individual qubits," said Jeremy Béjanin, a PhD...

Im Focus: Scientists develop a semiconductor nanocomposite material that moves in response to light

In a paper in Scientific Reports, a research team at Worcester Polytechnic Institute describes a novel light-activated phenomenon that could become the basis for applications as diverse as microscopic robotic grippers and more efficient solar cells.

A research team at Worcester Polytechnic Institute (WPI) has developed a revolutionary, light-activated semiconductor nanocomposite material that can be used...

Im Focus: Diamonds aren't forever: Sandia, Harvard team create first quantum computer bridge

By forcefully embedding two silicon atoms in a diamond matrix, Sandia researchers have demonstrated for the first time on a single chip all the components needed to create a quantum bridge to link quantum computers together.

"People have already built small quantum computers," says Sandia researcher Ryan Camacho. "Maybe the first useful one won't be a single giant quantum computer...

All Focus news of the innovation-report >>>



Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

Agricultural Trade Developments and Potentials in Central Asia and the South Caucasus

14.10.2016 | Event News

World Health Summit – Day Three: A Call to Action

12.10.2016 | Event News

Latest News

3-D-printed structures shrink when heated

26.10.2016 | Materials Sciences

Indian roadside refuse fires produce toxic rainbow

26.10.2016 | Health and Medicine

First results of NSTX-U research operations

26.10.2016 | Physics and Astronomy

More VideoLinks >>>