Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

DNA sequencing unlocks relationships among flowering plants

24.02.2010
The origins of flowering plants from peas to oak trees are now in clearer focus thanks to the efforts of University of Florida researchers.

A study appearing online this week in the Proceedings of the National Academy of Sciences unravels 100 million years of evolution through an extensive analysis of plant genomes. It targets one of the major moments in plant evolution, when the ancestors of most of the world’s flowering plants split into two major groups.

Together the two groups make up nearly 70 percent of all flowering plants and are part of a larger clade known as Pentapetalae, which means five petals. Understanding how these plants are related is a large undertaking that could help ecologists better understand which species are more vulnerable to environmental factors such as climate change.

Shortly after the two groups split apart, they simultaneously embarked upon a rapid burst of new species that lasted 5 million years. This study shows how those species are related and sheds further light on the emergence of flowering plants, an evolutionary phenomenon described by Charles Darwin as an abominable mystery.

“This paper and others show flowering plants as layer after layer of bursts of evolution,” said Doug Soltis, study co-author and UF distinguished professor of biology. “Now it’s falling together into two big groups.”

Pentapetalae has enormous diversity and contains nearly all flowering plants. Its two major groups, superrosids and superasterids, split apart between 111 million and 98 million years ago and now account for more than 200,000 species. The superrosids include such familiar plants as hibiscus, oaks, cotton and roses. The superasterids include mint, azaleas, dogwoods and sunflowers.

Earlier studies were limited by technology and involved only four or five genes. Those studies hinted at the results found in the new study but lacked statistical support, said study co-author Pam Soltis, distinguished professor and Florida Museum of Natural History curator of molecular systematics and evolutionary genetics.

The new study at UF’s Florida Museum of Natural History analyzed 86 complete plastid genome sequences from a wide range of plant species. Plastids are the plant cell component responsible for photosynthesis.

Previous genetic analyses of Pentapetalae failed to untangle the relationships among living species, suggesting that the plants diverged rapidly over 5 million years. Researchers selected genomes to sequence based on their best guess of genetic relationships from the previous sequencing work.

Genome sequencing is more time-consuming for plants than animals because plastid DNA is about 10 times larger than the mitochondrial DNA used in studying animal genomes. But continual improvements in DNA sequencing technology are now allowing researchers to analyze those larger amounts of data more quickly.

The study provides an important framework for further investigating evolutionary relationships by providing a much clearer picture of the deep divergence that led to the split within flowering plants, which then led to speciation in the two separate branches.

Eventually, researchers hope to match these evolutionary bursts with geological and climatic events in the earth’s history. “I think we’re starting to get to a point with a dated tree where we could start looking at what was happening at some of those time frames,” Pam Soltis said.

Pam Soltis | EurekAlert!
Further information:
http://www.flmnh.ufl.edu

More articles from Life Sciences:

nachricht Nerves control the body’s bacterial community
26.09.2017 | Christian-Albrechts-Universität zu Kiel

nachricht Ageless ears? Elderly barn owls do not become hard of hearing
26.09.2017 | Carl von Ossietzky-Universität Oldenburg

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: The fastest light-driven current source

Controlling electronic current is essential to modern electronics, as data and signals are transferred by streams of electrons which are controlled at high speed. Demands on transmission speeds are also increasing as technology develops. Scientists from the Chair of Laser Physics and the Chair of Applied Physics at Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU) have succeeded in switching on a current with a desired direction in graphene using a single laser pulse within a femtosecond ¬¬ – a femtosecond corresponds to the millionth part of a billionth of a second. This is more than a thousand times faster compared to the most efficient transistors today.

Graphene is up to the job

Im Focus: LaserTAB: More efficient and precise contacts thanks to human-robot collaboration

At the productronica trade fair in Munich this November, the Fraunhofer Institute for Laser Technology ILT will be presenting Laser-Based Tape-Automated Bonding, LaserTAB for short. The experts from Aachen will be demonstrating how new battery cells and power electronics can be micro-welded more efficiently and precisely than ever before thanks to new optics and robot support.

Fraunhofer ILT from Aachen relies on a clever combination of robotics and a laser scanner with new optics as well as process monitoring, which it has developed...

Im Focus: The pyrenoid is a carbon-fixing liquid droplet

Plants and algae use the enzyme Rubisco to fix carbon dioxide, removing it from the atmosphere and converting it into biomass. Algae have figured out a way to increase the efficiency of carbon fixation. They gather most of their Rubisco into a ball-shaped microcompartment called the pyrenoid, which they flood with a high local concentration of carbon dioxide. A team of scientists at Princeton University, the Carnegie Institution for Science, Stanford University and the Max Plank Institute of Biochemistry have unravelled the mysteries of how the pyrenoid is assembled. These insights can help to engineer crops that remove more carbon dioxide from the atmosphere while producing more food.

A warming planet

Im Focus: Highly precise wiring in the Cerebral Cortex

Our brains house extremely complex neuronal circuits, whose detailed structures are still largely unknown. This is especially true for the so-called cerebral cortex of mammals, where among other things vision, thoughts or spatial orientation are being computed. Here the rules by which nerve cells are connected to each other are only partly understood. A team of scientists around Moritz Helmstaedter at the Frankfiurt Max Planck Institute for Brain Research and Helene Schmidt (Humboldt University in Berlin) have now discovered a surprisingly precise nerve cell connectivity pattern in the part of the cerebral cortex that is responsible for orienting the individual animal or human in space.

The researchers report online in Nature (Schmidt et al., 2017. Axonal synapse sorting in medial entorhinal cortex, DOI: 10.1038/nature24005) that synapses in...

Im Focus: Tiny lasers from a gallery of whispers

New technique promises tunable laser devices

Whispering gallery mode (WGM) resonators are used to make tiny micro-lasers, sensors, switches, routers and other devices. These tiny structures rely on a...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

“Lasers in Composites Symposium” in Aachen – from Science to Application

19.09.2017 | Event News

I-ESA 2018 – Call for Papers

12.09.2017 | Event News

EMBO at Basel Life, a new conference on current and emerging life science research

06.09.2017 | Event News

 
Latest News

Nerves control the body’s bacterial community

26.09.2017 | Life Sciences

Four elements make 2-D optical platform

26.09.2017 | Physics and Astronomy

Goodbye, login. Hello, heart scan

26.09.2017 | Information Technology

VideoLinks
B2B-VideoLinks
More VideoLinks >>>