Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

DNA sequencing unlocks relationships among flowering plants

24.02.2010
The origins of flowering plants from peas to oak trees are now in clearer focus thanks to the efforts of University of Florida researchers.

A study appearing online this week in the Proceedings of the National Academy of Sciences unravels 100 million years of evolution through an extensive analysis of plant genomes. It targets one of the major moments in plant evolution, when the ancestors of most of the world’s flowering plants split into two major groups.

Together the two groups make up nearly 70 percent of all flowering plants and are part of a larger clade known as Pentapetalae, which means five petals. Understanding how these plants are related is a large undertaking that could help ecologists better understand which species are more vulnerable to environmental factors such as climate change.

Shortly after the two groups split apart, they simultaneously embarked upon a rapid burst of new species that lasted 5 million years. This study shows how those species are related and sheds further light on the emergence of flowering plants, an evolutionary phenomenon described by Charles Darwin as an abominable mystery.

“This paper and others show flowering plants as layer after layer of bursts of evolution,” said Doug Soltis, study co-author and UF distinguished professor of biology. “Now it’s falling together into two big groups.”

Pentapetalae has enormous diversity and contains nearly all flowering plants. Its two major groups, superrosids and superasterids, split apart between 111 million and 98 million years ago and now account for more than 200,000 species. The superrosids include such familiar plants as hibiscus, oaks, cotton and roses. The superasterids include mint, azaleas, dogwoods and sunflowers.

Earlier studies were limited by technology and involved only four or five genes. Those studies hinted at the results found in the new study but lacked statistical support, said study co-author Pam Soltis, distinguished professor and Florida Museum of Natural History curator of molecular systematics and evolutionary genetics.

The new study at UF’s Florida Museum of Natural History analyzed 86 complete plastid genome sequences from a wide range of plant species. Plastids are the plant cell component responsible for photosynthesis.

Previous genetic analyses of Pentapetalae failed to untangle the relationships among living species, suggesting that the plants diverged rapidly over 5 million years. Researchers selected genomes to sequence based on their best guess of genetic relationships from the previous sequencing work.

Genome sequencing is more time-consuming for plants than animals because plastid DNA is about 10 times larger than the mitochondrial DNA used in studying animal genomes. But continual improvements in DNA sequencing technology are now allowing researchers to analyze those larger amounts of data more quickly.

The study provides an important framework for further investigating evolutionary relationships by providing a much clearer picture of the deep divergence that led to the split within flowering plants, which then led to speciation in the two separate branches.

Eventually, researchers hope to match these evolutionary bursts with geological and climatic events in the earth’s history. “I think we’re starting to get to a point with a dated tree where we could start looking at what was happening at some of those time frames,” Pam Soltis said.

Pam Soltis | EurekAlert!
Further information:
http://www.flmnh.ufl.edu

More articles from Life Sciences:

nachricht More genes are active in high-performance maize
19.01.2018 | Rheinische Friedrich-Wilhelms-Universität Bonn

nachricht How plants see light
19.01.2018 | Albert-Ludwigs-Universität Freiburg im Breisgau

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Artificial agent designs quantum experiments

On the way to an intelligent laboratory, physicists from Innsbruck and Vienna present an artificial agent that autonomously designs quantum experiments. In initial experiments, the system has independently (re)discovered experimental techniques that are nowadays standard in modern quantum optical laboratories. This shows how machines could play a more creative role in research in the future.

We carry smartphones in our pockets, the streets are dotted with semi-autonomous cars, but in the research laboratory experiments are still being designed by...

Im Focus: Scientists decipher key principle behind reaction of metalloenzymes

So-called pre-distorted states accelerate photochemical reactions too

What enables electrons to be transferred swiftly, for example during photosynthesis? An interdisciplinary team of researchers has worked out the details of how...

Im Focus: The first precise measurement of a single molecule's effective charge

For the first time, scientists have precisely measured the effective electrical charge of a single molecule in solution. This fundamental insight of an SNSF Professor could also pave the way for future medical diagnostics.

Electrical charge is one of the key properties that allows molecules to interact. Life itself depends on this phenomenon: many biological processes involve...

Im Focus: Paradigm shift in Paris: Encouraging an holistic view of laser machining

At the JEC World Composite Show in Paris in March 2018, the Fraunhofer Institute for Laser Technology ILT will be focusing on the latest trends and innovations in laser machining of composites. Among other things, researchers at the booth shared with the Aachen Center for Integrative Lightweight Production (AZL) will demonstrate how lasers can be used for joining, structuring, cutting and drilling composite materials.

No other industry has attracted as much public attention to composite materials as the automotive industry, which along with the aerospace industry is a driver...

Im Focus: Room-temperature multiferroic thin films and their properties

Scientists at Tokyo Institute of Technology (Tokyo Tech) and Tohoku University have developed high-quality GFO epitaxial films and systematically investigated their ferroelectric and ferromagnetic properties. They also demonstrated the room-temperature magnetocapacitance effects of these GFO thin films.

Multiferroic materials show magnetically driven ferroelectricity. They are attracting increasing attention because of their fascinating properties such as...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

10th International Symposium: “Advanced Battery Power – Kraftwerk Batterie” Münster, 10-11 April 2018

08.01.2018 | Event News

See, understand and experience the work of the future

11.12.2017 | Event News

Innovative strategies to tackle parasitic worms

08.12.2017 | Event News

 
Latest News

Let the good tubes roll

19.01.2018 | Materials Sciences

How cancer metastasis happens: Researchers reveal a key mechanism

19.01.2018 | Health and Medicine

Meteoritic stardust unlocks timing of supernova dust formation

19.01.2018 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>