Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

DNA repair: a new letter in the cell alphabet

14.02.2017

Results reveal how discoveries may be hidden in scientific “blind spots”

Cells need to repair damaged DNA in our genes to prevent the development of cancer and other diseases. Our cells therefore activate and send “repair-proteins” to the damaged parts within the DNA. To do this, an elaborate protein language has evolved.


A complex tag for DNA-repair: 3D cartoon showing the linkage of ADP-ribose to the amino acid serine in a protein (turquoise)

Max Planck Institute for Biology of Ageing

Now scientists from the Max Planck Institute for Biology of Ageing have discovered the way a new letter of this alphabet is used in cells. This novel protein modification, called serine ADP-ribosylation, has been overlooked by scientists for decades. This finding reveals how important discoveries may be hidden in scientific “blind spots”.

In basic science, one often starts a new research project by trying to reproduce, confirm and build upon what others have shown before. This was exactly what a young team of scientists did, led by Ivan Matic, research group leader at the Max Planck Institute for Biology of Ageing in Cologne, in collaboration with the group of Ivan Ahel (University of Oxford). The end result was that the team found a new mechanism, turning some old discoveries upside down.

The research group investigates how the cell determines the fate of specific proteins using tags, so called “post-translational modifications”. These are small chemical flags, added to proteins in order to activate them and make them functional. They function as letters of a coding alphabet that the cell can use to determine what to do with a specific protein, for instance sending it off to the cell nucleus to repair damage to our genes.

“We were investigating one of the most complex tags, which is known as adenosine diphosphate ribosylation (ADPr). Researchers in the field have thought for many years that this tag is added to particular parts of proteins - the amino acids glutamate, aspartate, arginine and lysine. However, when we looked deeply into the data, we always saw the amino acid serine very close by, which made us very suspicious. After a long time of struggling we could show, that actually the amino acid serine is tagged”, explains Matic.

The devil is in the details

For non-scientists this may seem like a small detail. But in the cell “factory” this is an important mechanism. It is like discovering a new letter to an alphabet you thought you knew – namely the alphabet the cell uses for sending internal messages. The research team could show that this modification plays a crucial role for repairing DNA damage – a process that they can now start to decode.

Damage in our DNA can cause mutations that lead to a variety of diseases, such as cancer or neurodegeneration. This damage is inevitable, and repairing it is essential for any organism, including humans. Having discovered this new letter in the cell’s alphabet, the research team has now also described its molecular mechanism and shown that its usage is widespread.

“We found that this modification is particularly utilized by processes important for genome stability. This research opens up new possibilities to improve and increase the efficiency of the DNA repair machinery”, comments Juan José Bonfiglio, a researcher in the group of Ivan Matic.

The blind spot

But how can it happen that this modification has been overlooked for so many years? Tom Colby, a scientist working in the Matic group tries to explain: “Scientists today are supposed to produce and analyse large amounts of data. That means that you rely on pre-developed tools and apply them to biological systems.

But the problem is that these tools are sometimes built on assumptions that can cause blind spots. The most interesting results are sometimes hidden in the blind spots nobody thinks of”. Matic adds to this: “I am old-fashioned. I like to step back and look at the original data in detail. Without this we would have overlooked this new modification as people did in the years before”.

Weitere Informationen:

https://www.age.mpg.de/public-relations/news/detail/dna-repair-a-new-letter-in-t...
http://www.cell.com/molecular-cell/fulltext/S1097-2765(17)30003-5
https://www.ncbi.nlm.nih.gov/pubmed/27723750

Dr. Maren Berghoff | Max-Planck-Institut für Biologie des Alterns

More articles from Life Sciences:

nachricht Cancer diagnosis: no more needles?
25.05.2018 | Christian-Albrechts-Universität zu Kiel

nachricht Less is more? Gene switch for healthy aging found
25.05.2018 | Leibniz-Institut für Alternsforschung - Fritz-Lipmann-Institut e.V. (FLI)

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Powerful IT security for the car of the future – research alliance develops new approaches

The more electronics steer, accelerate and brake cars, the more important it is to protect them against cyber-attacks. That is why 15 partners from industry and academia will work together over the next three years on new approaches to IT security in self-driving cars. The joint project goes by the name Security For Connected, Autonomous Cars (SecForCARs) and has funding of €7.2 million from the German Federal Ministry of Education and Research. Infineon is leading the project.

Vehicles already offer diverse communication interfaces and more and more automated functions, such as distance and lane-keeping assist systems. At the same...

Im Focus: Molecular switch will facilitate the development of pioneering electro-optical devices

A research team led by physicists at the Technical University of Munich (TUM) has developed molecular nanoswitches that can be toggled between two structurally different states using an applied voltage. They can serve as the basis for a pioneering class of devices that could replace silicon-based components with organic molecules.

The development of new electronic technologies drives the incessant reduction of functional component sizes. In the context of an international collaborative...

Im Focus: LZH showcases laser material processing of tomorrow at the LASYS 2018

At the LASYS 2018, from June 5th to 7th, the Laser Zentrum Hannover e.V. (LZH) will be showcasing processes for the laser material processing of tomorrow in hall 4 at stand 4E75. With blown bomb shells the LZH will present first results of a research project on civil security.

At this year's LASYS, the LZH will exhibit light-based processes such as cutting, welding, ablation and structuring as well as additive manufacturing for...

Im Focus: Self-illuminating pixels for a new display generation

There are videos on the internet that can make one marvel at technology. For example, a smartphone is casually bent around the arm or a thin-film display is rolled in all directions and with almost every diameter. From the user's point of view, this looks fantastic. From a professional point of view, however, the question arises: Is that already possible?

At Display Week 2018, scientists from the Fraunhofer Institute for Applied Polymer Research IAP will be demonstrating today’s technological possibilities and...

Im Focus: Explanation for puzzling quantum oscillations has been found

So-called quantum many-body scars allow quantum systems to stay out of equilibrium much longer, explaining experiment | Study published in Nature Physics

Recently, researchers from Harvard and MIT succeeded in trapping a record 53 atoms and individually controlling their quantum state, realizing what is called a...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

In focus: Climate adapted plants

25.05.2018 | Event News

Save the date: Forum European Neuroscience – 07-11 July 2018 in Berlin, Germany

02.05.2018 | Event News

Invitation to the upcoming "Current Topics in Bioinformatics: Big Data in Genomics and Medicine"

13.04.2018 | Event News

 
Latest News

In focus: Climate adapted plants

25.05.2018 | Event News

Flow probes from the 3D printer

25.05.2018 | Machine Engineering

Less is more? Gene switch for healthy aging found

25.05.2018 | Life Sciences

VideoLinks
Science & Research
Overview of more VideoLinks >>>