Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

DNA repair: a new letter in the cell alphabet

14.02.2017

Results reveal how discoveries may be hidden in scientific “blind spots”

Cells need to repair damaged DNA in our genes to prevent the development of cancer and other diseases. Our cells therefore activate and send “repair-proteins” to the damaged parts within the DNA. To do this, an elaborate protein language has evolved.


A complex tag for DNA-repair: 3D cartoon showing the linkage of ADP-ribose to the amino acid serine in a protein (turquoise)

Max Planck Institute for Biology of Ageing

Now scientists from the Max Planck Institute for Biology of Ageing have discovered the way a new letter of this alphabet is used in cells. This novel protein modification, called serine ADP-ribosylation, has been overlooked by scientists for decades. This finding reveals how important discoveries may be hidden in scientific “blind spots”.

In basic science, one often starts a new research project by trying to reproduce, confirm and build upon what others have shown before. This was exactly what a young team of scientists did, led by Ivan Matic, research group leader at the Max Planck Institute for Biology of Ageing in Cologne, in collaboration with the group of Ivan Ahel (University of Oxford). The end result was that the team found a new mechanism, turning some old discoveries upside down.

The research group investigates how the cell determines the fate of specific proteins using tags, so called “post-translational modifications”. These are small chemical flags, added to proteins in order to activate them and make them functional. They function as letters of a coding alphabet that the cell can use to determine what to do with a specific protein, for instance sending it off to the cell nucleus to repair damage to our genes.

“We were investigating one of the most complex tags, which is known as adenosine diphosphate ribosylation (ADPr). Researchers in the field have thought for many years that this tag is added to particular parts of proteins - the amino acids glutamate, aspartate, arginine and lysine. However, when we looked deeply into the data, we always saw the amino acid serine very close by, which made us very suspicious. After a long time of struggling we could show, that actually the amino acid serine is tagged”, explains Matic.

The devil is in the details

For non-scientists this may seem like a small detail. But in the cell “factory” this is an important mechanism. It is like discovering a new letter to an alphabet you thought you knew – namely the alphabet the cell uses for sending internal messages. The research team could show that this modification plays a crucial role for repairing DNA damage – a process that they can now start to decode.

Damage in our DNA can cause mutations that lead to a variety of diseases, such as cancer or neurodegeneration. This damage is inevitable, and repairing it is essential for any organism, including humans. Having discovered this new letter in the cell’s alphabet, the research team has now also described its molecular mechanism and shown that its usage is widespread.

“We found that this modification is particularly utilized by processes important for genome stability. This research opens up new possibilities to improve and increase the efficiency of the DNA repair machinery”, comments Juan José Bonfiglio, a researcher in the group of Ivan Matic.

The blind spot

But how can it happen that this modification has been overlooked for so many years? Tom Colby, a scientist working in the Matic group tries to explain: “Scientists today are supposed to produce and analyse large amounts of data. That means that you rely on pre-developed tools and apply them to biological systems.

But the problem is that these tools are sometimes built on assumptions that can cause blind spots. The most interesting results are sometimes hidden in the blind spots nobody thinks of”. Matic adds to this: “I am old-fashioned. I like to step back and look at the original data in detail. Without this we would have overlooked this new modification as people did in the years before”.

Weitere Informationen:

https://www.age.mpg.de/public-relations/news/detail/dna-repair-a-new-letter-in-t...
http://www.cell.com/molecular-cell/fulltext/S1097-2765(17)30003-5
https://www.ncbi.nlm.nih.gov/pubmed/27723750

Dr. Maren Berghoff | Max-Planck-Institut für Biologie des Alterns

More articles from Life Sciences:

nachricht Warming ponds could accelerate climate change
21.02.2017 | University of Exeter

nachricht An alternative to opioids? Compound from marine snail is potent pain reliever
21.02.2017 | University of Utah

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Breakthrough with a chain of gold atoms

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

Im Focus: DNA repair: a new letter in the cell alphabet

Results reveal how discoveries may be hidden in scientific “blind spots”

Cells need to repair damaged DNA in our genes to prevent the development of cancer and other diseases. Our cells therefore activate and send “repair-proteins”...

Im Focus: Dresdner scientists print tomorrow’s world

The Fraunhofer IWS Dresden and Technische Universität Dresden inaugurated their jointly operated Center for Additive Manufacturing Dresden (AMCD) with a festive ceremony on February 7, 2017. Scientists from various disciplines perform research on materials, additive manufacturing processes and innovative technologies, which build up components in a layer by layer process. This technology opens up new horizons for component design and combinations of functions. For example during fabrication, electrical conductors and sensors are already able to be additively manufactured into components. They provide information about stress conditions of a product during operation.

The 3D-printing technology, or additive manufacturing as it is often called, has long made the step out of scientific research laboratories into industrial...

Im Focus: Mimicking nature's cellular architectures via 3-D printing

Research offers new level of control over the structure of 3-D printed materials

Nature does amazing things with limited design materials. Grass, for example, can support its own weight, resist strong wind loads, and recover after being...

Im Focus: Three Magnetic States for Each Hole

Nanometer-scale magnetic perforated grids could create new possibilities for computing. Together with international colleagues, scientists from the Helmholtz Zentrum Dresden-Rossendorf (HZDR) have shown how a cobalt grid can be reliably programmed at room temperature. In addition they discovered that for every hole ("antidot") three magnetic states can be configured. The results have been published in the journal "Scientific Reports".

Physicist Dr. Rantej Bali from the HZDR, together with scientists from Singapore and Australia, designed a special grid structure in a thin layer of cobalt in...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Booth and panel discussion – The Lindau Nobel Laureate Meetings at the AAAS 2017 Annual Meeting

13.02.2017 | Event News

Complex Loading versus Hidden Reserves

10.02.2017 | Event News

International Conference on Crystal Growth in Freiburg

09.02.2017 | Event News

 
Latest News

Start codons in DNA may be more numerous than previously thought

21.02.2017 | Life Sciences

An alternative to opioids? Compound from marine snail is potent pain reliever

21.02.2017 | Life Sciences

Warming ponds could accelerate climate change

21.02.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>