Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

DNA repair: a new letter in the cell alphabet

14.02.2017

Results reveal how discoveries may be hidden in scientific “blind spots”

Cells need to repair damaged DNA in our genes to prevent the development of cancer and other diseases. Our cells therefore activate and send “repair-proteins” to the damaged parts within the DNA. To do this, an elaborate protein language has evolved.


A complex tag for DNA-repair: 3D cartoon showing the linkage of ADP-ribose to the amino acid serine in a protein (turquoise)

Max Planck Institute for Biology of Ageing

Now scientists from the Max Planck Institute for Biology of Ageing have discovered the way a new letter of this alphabet is used in cells. This novel protein modification, called serine ADP-ribosylation, has been overlooked by scientists for decades. This finding reveals how important discoveries may be hidden in scientific “blind spots”.

In basic science, one often starts a new research project by trying to reproduce, confirm and build upon what others have shown before. This was exactly what a young team of scientists did, led by Ivan Matic, research group leader at the Max Planck Institute for Biology of Ageing in Cologne, in collaboration with the group of Ivan Ahel (University of Oxford). The end result was that the team found a new mechanism, turning some old discoveries upside down.

The research group investigates how the cell determines the fate of specific proteins using tags, so called “post-translational modifications”. These are small chemical flags, added to proteins in order to activate them and make them functional. They function as letters of a coding alphabet that the cell can use to determine what to do with a specific protein, for instance sending it off to the cell nucleus to repair damage to our genes.

“We were investigating one of the most complex tags, which is known as adenosine diphosphate ribosylation (ADPr). Researchers in the field have thought for many years that this tag is added to particular parts of proteins - the amino acids glutamate, aspartate, arginine and lysine. However, when we looked deeply into the data, we always saw the amino acid serine very close by, which made us very suspicious. After a long time of struggling we could show, that actually the amino acid serine is tagged”, explains Matic.

The devil is in the details

For non-scientists this may seem like a small detail. But in the cell “factory” this is an important mechanism. It is like discovering a new letter to an alphabet you thought you knew – namely the alphabet the cell uses for sending internal messages. The research team could show that this modification plays a crucial role for repairing DNA damage – a process that they can now start to decode.

Damage in our DNA can cause mutations that lead to a variety of diseases, such as cancer or neurodegeneration. This damage is inevitable, and repairing it is essential for any organism, including humans. Having discovered this new letter in the cell’s alphabet, the research team has now also described its molecular mechanism and shown that its usage is widespread.

“We found that this modification is particularly utilized by processes important for genome stability. This research opens up new possibilities to improve and increase the efficiency of the DNA repair machinery”, comments Juan José Bonfiglio, a researcher in the group of Ivan Matic.

The blind spot

But how can it happen that this modification has been overlooked for so many years? Tom Colby, a scientist working in the Matic group tries to explain: “Scientists today are supposed to produce and analyse large amounts of data. That means that you rely on pre-developed tools and apply them to biological systems.

But the problem is that these tools are sometimes built on assumptions that can cause blind spots. The most interesting results are sometimes hidden in the blind spots nobody thinks of”. Matic adds to this: “I am old-fashioned. I like to step back and look at the original data in detail. Without this we would have overlooked this new modification as people did in the years before”.

Weitere Informationen:

https://www.age.mpg.de/public-relations/news/detail/dna-repair-a-new-letter-in-t...
http://www.cell.com/molecular-cell/fulltext/S1097-2765(17)30003-5
https://www.ncbi.nlm.nih.gov/pubmed/27723750

Dr. Maren Berghoff | Max-Planck-Institut für Biologie des Alterns

More articles from Life Sciences:

nachricht Programming cells with computer-like logic
27.07.2017 | Wyss Institute for Biologically Inspired Engineering at Harvard

nachricht Identified the component that allows a lethal bacteria to spread resistance to antibiotics
27.07.2017 | Institute for Research in Biomedicine (IRB Barcelona)

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Physicists Design Ultrafocused Pulses

Physicists working with researcher Oriol Romero-Isart devised a new simple scheme to theoretically generate arbitrarily short and focused electromagnetic fields. This new tool could be used for precise sensing and in microscopy.

Microwaves, heat radiation, light and X-radiation are examples for electromagnetic waves. Many applications require to focus the electromagnetic fields to...

Im Focus: Carbon Nanotubes Turn Electrical Current into Light-emitting Quasi-particles

Strong light-matter coupling in these semiconducting tubes may hold the key to electrically pumped lasers

Light-matter quasi-particles can be generated electrically in semiconducting carbon nanotubes. Material scientists and physicists from Heidelberg University...

Im Focus: Flexible proximity sensor creates smart surfaces

Fraunhofer IPA has developed a proximity sensor made from silicone and carbon nanotubes (CNT) which detects objects and determines their position. The materials and printing process used mean that the sensor is extremely flexible, economical and can be used for large surfaces. Industry and research partners can use and further develop this innovation straight away.

At first glance, the proximity sensor appears to be nothing special: a thin, elastic layer of silicone onto which black square surfaces are printed, but these...

Im Focus: 3-D scanning with water

3-D shape acquisition using water displacement as the shape sensor for the reconstruction of complex objects

A global team of computer scientists and engineers have developed an innovative technique that more completely reconstructs challenging 3D objects. An ancient...

Im Focus: Manipulating Electron Spins Without Loss of Information

Physicists have developed a new technique that uses electrical voltages to control the electron spin on a chip. The newly-developed method provides protection from spin decay, meaning that the contained information can be maintained and transmitted over comparatively large distances, as has been demonstrated by a team from the University of Basel’s Department of Physics and the Swiss Nanoscience Institute. The results have been published in Physical Review X.

For several years, researchers have been trying to use the spin of an electron to store and transmit information. The spin of each electron is always coupled...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Clash of Realities 2017: Registration now open. International Conference at TH Köln

26.07.2017 | Event News

Closing the Sustainability Circle: Protection of Food with Biobased Materials

21.07.2017 | Event News

»We are bringing Additive Manufacturing to SMEs«

19.07.2017 | Event News

 
Latest News

Programming cells with computer-like logic

27.07.2017 | Life Sciences

Identified the component that allows a lethal bacteria to spread resistance to antibiotics

27.07.2017 | Life Sciences

Malaria Already Endemic in the Mediterranean by the Roman Period

27.07.2017 | Health and Medicine

VideoLinks
B2B-VideoLinks
More VideoLinks >>>