Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Divide and rule: a tumour's strategy

20.08.2015

Researchers supported by the Swiss National Science Foundation have discovered how aggressive cells can invade healthy tissue during the earliest stage of tumour development. This opens up new ways of attacking cancer at its root.

When normal body cells escape the control from their peers, a tumour can form and eventually lead to cancer. Scientists have been struggling to understand how exactly these cells manage to set themselves free in the first place.


SNSF-study about the earliest stage of tumour development opens up new ways of attacking cancer at its root.

The team of Eduardo Moreno, professor at the Institute of Cell Biology at the University of Bern, has now discovered that a mechanism that is known from the early development of embryos plays a role in the earliest stages of adult tumour development (*).

As part of their SNSF-funded project, the researchers were able to film the cells of developing fruit fly pupas under the microscope for several hours. The genetically modified fruit flies carried an artificially activated gene called Myc, which is known to be involved in tumour formation.

The gene alone was sufficient to induce abnormal cells to divide more actively, squeeze through between healthy cells, kill them and take over their place. This represents an unexpected mechanism of invading tissues in the first phase of tumour development.

A model for most cancers

"The activation of the tumour gene gave the cells special mechanical properties helping them to intermingle with normal cells, surround them and eventually kill them more efficiently", says Romain Levayer, the first author of the study.

"This invasion mechanism is known to be active during embryonic development when cells rearrange themselves to transform the body shape. We have now shown that cells are capable of using the same programme in order to invade healthy tissue", says group leader Moreno. "Divide and rule", the famous military strategy, is how the researchers describe the aggressive cells' behaviour.

The mechanism could explain the earliest beginnings of tumour development of most cancer types and is different from invasion mechanisms of metastases in later phases. "We were able to observe the mechanism in fruit fly pupas. The fruit fly was chosen as a model because it can be easily modified genetically. Since the pupa does not move and is transparent, it is ideal for observation under the microscope", says Moreno.

About 90 percent of all cancers form in lining tissues (epithelia) like the one filmed in the pupas: in colon, skin or the mammary gland. The manipulated Myc gene is the most commonly misregulated gene in tumours. The identified mechanism could therefore apply to many cancers and help scientists to find new strategies to prevent tumour formation at its root before much damage has been caused.

(*) R. Levayer, B. Hauert and E. Moreno et al. (2015). Myc-induced cell mixing is required for competitive tissue invasion and destruction. Nature online: doi:10.1038/nature14684
(Available to journalists as a PDF file from the SNSF: com@snf.ch)

> Video of Invasion Mechanism (on YouTube): https://youtu.be/DaQ4oXPTHK0
Abnormal green cells invade healthy purple tissue in fruit fly pupa
© Eduardo Moreno, University of Bern

Contact

Prof. Dr. Eduardo Moreno
Institute of Cell Biology
Baltzerstrasse 4
CH-3012 Bern
Phone: +41 (0)31 631 46 77
E-mail: eduardo.moreno@izb.unibe.ch

Weitere Informationen:

http://www.snf.ch/en/researchinFocus/media/press-releases/Pages/default.aspx

Media - Abteilung Kommunikation | idw - Informationsdienst Wissenschaft

More articles from Life Sciences:

nachricht CRISPR meets single-cell sequencing in new screening method
19.01.2017 | CeMM Forschungszentrum für Molekulare Medizin der Österreichischen Akademie der Wissenschaften

nachricht Toward a 'smart' patch that automatically delivers insulin when needed
18.01.2017 | American Chemical Society

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Traffic jam in empty space

New success for Konstanz physicists in studying the quantum vacuum

An important step towards a completely new experimental access to quantum physics has been made at University of Konstanz. The team of scientists headed by...

Im Focus: How gut bacteria can make us ill

HZI researchers decipher infection mechanisms of Yersinia and immune responses of the host

Yersiniae cause severe intestinal infections. Studies using Yersinia pseudotuberculosis as a model organism aim to elucidate the infection mechanisms of these...

Im Focus: Interfacial Superconductivity: Magnetic and superconducting order revealed simultaneously

Researchers from the University of Hamburg in Germany, in collaboration with colleagues from the University of Aarhus in Denmark, have synthesized a new superconducting material by growing a few layers of an antiferromagnetic transition-metal chalcogenide on a bismuth-based topological insulator, both being non-superconducting materials.

While superconductivity and magnetism are generally believed to be mutually exclusive, surprisingly, in this new material, superconducting correlations...

Im Focus: Studying fundamental particles in materials

Laser-driving of semimetals allows creating novel quasiparticle states within condensed matter systems and switching between different states on ultrafast time scales

Studying properties of fundamental particles in condensed matter systems is a promising approach to quantum field theory. Quasiparticles offer the opportunity...

Im Focus: Designing Architecture with Solar Building Envelopes

Among the general public, solar thermal energy is currently associated with dark blue, rectangular collectors on building roofs. Technologies are needed for aesthetically high quality architecture which offer the architect more room for manoeuvre when it comes to low- and plus-energy buildings. With the “ArKol” project, researchers at Fraunhofer ISE together with partners are currently developing two façade collectors for solar thermal energy generation, which permit a high degree of design flexibility: a strip collector for opaque façade sections and a solar thermal blind for transparent sections. The current state of the two developments will be presented at the BAU 2017 trade fair.

As part of the “ArKol – development of architecturally highly integrated façade collectors with heat pipes” project, Fraunhofer ISE together with its partners...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Sustainable Water use in Agriculture in Eastern Europe and Central Asia

19.01.2017 | Event News

12V, 48V, high-voltage – trends in E/E automotive architecture

10.01.2017 | Event News

2nd Conference on Non-Textual Information on 10 and 11 May 2017 in Hannover

09.01.2017 | Event News

 
Latest News

Global threat to primates concerns us all

19.01.2017 | Ecology, The Environment and Conservation

Scientist from Kiel University coordinates Million Euros Project in Inflammation Research

19.01.2017 | Awards Funding

The Great Unknown: Risk-Taking Behavior in Adolescents

19.01.2017 | Studies and Analyses

VideoLinks
B2B-VideoLinks
More VideoLinks >>>