Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Divide and rule: a tumour's strategy

20.08.2015

Researchers supported by the Swiss National Science Foundation have discovered how aggressive cells can invade healthy tissue during the earliest stage of tumour development. This opens up new ways of attacking cancer at its root.

When normal body cells escape the control from their peers, a tumour can form and eventually lead to cancer. Scientists have been struggling to understand how exactly these cells manage to set themselves free in the first place.


SNSF-study about the earliest stage of tumour development opens up new ways of attacking cancer at its root.

The team of Eduardo Moreno, professor at the Institute of Cell Biology at the University of Bern, has now discovered that a mechanism that is known from the early development of embryos plays a role in the earliest stages of adult tumour development (*).

As part of their SNSF-funded project, the researchers were able to film the cells of developing fruit fly pupas under the microscope for several hours. The genetically modified fruit flies carried an artificially activated gene called Myc, which is known to be involved in tumour formation.

The gene alone was sufficient to induce abnormal cells to divide more actively, squeeze through between healthy cells, kill them and take over their place. This represents an unexpected mechanism of invading tissues in the first phase of tumour development.

A model for most cancers

"The activation of the tumour gene gave the cells special mechanical properties helping them to intermingle with normal cells, surround them and eventually kill them more efficiently", says Romain Levayer, the first author of the study.

"This invasion mechanism is known to be active during embryonic development when cells rearrange themselves to transform the body shape. We have now shown that cells are capable of using the same programme in order to invade healthy tissue", says group leader Moreno. "Divide and rule", the famous military strategy, is how the researchers describe the aggressive cells' behaviour.

The mechanism could explain the earliest beginnings of tumour development of most cancer types and is different from invasion mechanisms of metastases in later phases. "We were able to observe the mechanism in fruit fly pupas. The fruit fly was chosen as a model because it can be easily modified genetically. Since the pupa does not move and is transparent, it is ideal for observation under the microscope", says Moreno.

About 90 percent of all cancers form in lining tissues (epithelia) like the one filmed in the pupas: in colon, skin or the mammary gland. The manipulated Myc gene is the most commonly misregulated gene in tumours. The identified mechanism could therefore apply to many cancers and help scientists to find new strategies to prevent tumour formation at its root before much damage has been caused.

(*) R. Levayer, B. Hauert and E. Moreno et al. (2015). Myc-induced cell mixing is required for competitive tissue invasion and destruction. Nature online: doi:10.1038/nature14684
(Available to journalists as a PDF file from the SNSF: com@snf.ch)

> Video of Invasion Mechanism (on YouTube): https://youtu.be/DaQ4oXPTHK0
Abnormal green cells invade healthy purple tissue in fruit fly pupa
© Eduardo Moreno, University of Bern

Contact

Prof. Dr. Eduardo Moreno
Institute of Cell Biology
Baltzerstrasse 4
CH-3012 Bern
Phone: +41 (0)31 631 46 77
E-mail: eduardo.moreno@izb.unibe.ch

Weitere Informationen:

http://www.snf.ch/en/researchinFocus/media/press-releases/Pages/default.aspx

Media - Abteilung Kommunikation | idw - Informationsdienst Wissenschaft

More articles from Life Sciences:

nachricht Embryonic development: How do limbs develop from cells?
18.05.2018 | Humboldt-Universität zu Berlin

nachricht Reading histone modifications, an oncoprotein is modified in return
18.05.2018 | American Society for Biochemistry and Molecular Biology

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Explanation for puzzling quantum oscillations has been found

So-called quantum many-body scars allow quantum systems to stay out of equilibrium much longer, explaining experiment | Study published in Nature Physics

Recently, researchers from Harvard and MIT succeeded in trapping a record 53 atoms and individually controlling their quantum state, realizing what is called a...

Im Focus: Dozens of binaries from Milky Way's globular clusters could be detectable by LISA

Next-generation gravitational wave detector in space will complement LIGO on Earth

The historic first detection of gravitational waves from colliding black holes far outside our galaxy opened a new window to understanding the universe. A...

Im Focus: Entangled atoms shine in unison

A team led by Austrian experimental physicist Rainer Blatt has succeeded in characterizing the quantum entanglement of two spatially separated atoms by observing their light emission. This fundamental demonstration could lead to the development of highly sensitive optical gradiometers for the precise measurement of the gravitational field or the earth's magnetic field.

The age of quantum technology has long been heralded. Decades of research into the quantum world have led to the development of methods that make it possible...

Im Focus: Computer-Designed Customized Regenerative Heart Valves

Cardiovascular tissue engineering aims to treat heart disease with prostheses that grow and regenerate. Now, researchers from the University of Zurich, the Technical University Eindhoven and the Charité Berlin have successfully implanted regenerative heart valves, designed with the aid of computer simulations, into sheep for the first time.

Producing living tissue or organs based on human cells is one of the main research fields in regenerative medicine. Tissue engineering, which involves growing...

Im Focus: Light-induced superconductivity under high pressure

A team of scientists of the Max Planck Institute for the Structure and Dynamics of Matter (MPSD) at the Center for Free-Electron Laser Science in Hamburg investigated optically-induced superconductivity in the alkali-doped fulleride K3C60under high external pressures. This study allowed, on one hand, to uniquely assess the nature of the transient state as a superconducting phase. In addition, it unveiled the possibility to induce superconductivity in K3C60 at temperatures far above the -170 degrees Celsius hypothesized previously, and rather all the way to room temperature. The paper by Cantaluppi et al has been published in Nature Physics.

Unlike ordinary metals, superconductors have the unique capability of transporting electrical currents without any loss. Nowadays, their technological...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

Save the date: Forum European Neuroscience – 07-11 July 2018 in Berlin, Germany

02.05.2018 | Event News

Invitation to the upcoming "Current Topics in Bioinformatics: Big Data in Genomics and Medicine"

13.04.2018 | Event News

Unique scope of UV LED technologies and applications presented in Berlin: ICULTA-2018

12.04.2018 | Event News

 
Latest News

Supersonic waves may help electronics beat the heat

18.05.2018 | Power and Electrical Engineering

Keeping a Close Eye on Ice Loss

18.05.2018 | Information Technology

CrowdWater: An App for Flood Research

18.05.2018 | Information Technology

VideoLinks
Science & Research
Overview of more VideoLinks >>>