Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Dispersal, the key for understanding marine biodiversity

31.10.2016

Dispersal plays a key role to connect populations, and contrastingly, its moderate limitation is one of the main processes to maintain species coexistence and promote regional biodiversity. A study recently published in Scientific Reports has explored whether neutral theory predictions with respect to marine biological connectivity are correct or not.

Under the assumptions of Stephen P. Hubbell's neutral theory of biodiversity and Motoo Kimura's neutral theory of molecular evolution, dispersal limitation and demographic changes in populations due to chance (stochasticity) determine genetic and ecology drift, respectively.


This image shows wind dispersal in pelagic species.

Credit: © Luis Quinta

So these processes would shape not only the genetic structure of the populations within the space, but also the structure of communities and their spatial beta-diversity patterns. These aspects compared have scarcely been explored empirically in the marine ecosystem, in particular.

In a recent study published in Scientific Reports, a team comprising 17 scientists from 14 centres and led by the Spanish R&D centre AZTI have gathered large data sets on the genetic structure of populations (98 benthic macroinvertebrate species and 35 plankton species) and biogeographical data (2,193 benthic macroinvertebrate species and 734 plankton species) with the aim of confirming the predictions of the Hubbell and Kimura theories in marine biological connectivity.

"Better understanding the regional patterns of the populations and communities are essential aspects in protecting and managing marine biodiversity," explained Guillem Chust, an AZTI researcher. "With these data and based on the genetic differentiations relative to geographical distance and the diversity of species that comprise a community, we have been able to estimate the dispersal distances."

The most significant result found by this research team stems from the fact that "the estimated dispersal distances ranked the biological groups in the same order at both genetic and community levels, as predicted by organism dispersal ability and seascape connectivity, as predicted by the type of dispersal and the connectivity of the seascape it inhabits," stressed Chust.

Specifically, according to the results of the research, in the species that inhabit or are found associated with sediment (macrobenthos) and whose larvae are not dispersed in the plankton display shorter dispersal distances than those whose larvae are dispersed in the plankton. Likewise, both groups displayed smaller dispersal scales than the plankton species (including phyto- and zoo-plankton). This range of dispersion scales is associated with the limitations of movement by the macrobenthos on the seabed, compared with the pelagic habitat where the plankton populations are more connected through the marine currents owing to passive dispersal.

These results show that "the limitation in the dispersal of individuals similarly determines the degree of connectivity not only of species between communities but also of the genes in the subpopulations of the same species, thus supporting the predictions of the neutral theories in marine biodiversity patterns," says the AZTI researcher. "Dispersal therefore emerges as a key element in generating biogeographical distribution patterns above other processes also involved, such as environmental differentiation by ecological niche and speciation through natural selection," he concluded.

###

This piece of research has been conducted within the framework of the DEVOTES European project (DEVelopment Of innovative Tools for understanding marine biodiversity and assessing good Environmental Status; http://www.devotes-project.eu), coordinated by Basque research institute AZTI.

Reference:

Chust, G., E. Villarino, A. Chenuil, X. Irigoien, N. Bizsel, A. Bode, C. Broms, S. Claus, M. L. Fernández de Puelles, S. Fonda-Umani, G. Hoarau, M. G. Mazzocchi, P. Mozetič, L. Vandepitte, H. Veríssimo, S. Zervoudaki, and A. Borja. 2016. Dispersal similarly shapes both population genetics and community patterns in the marine realm. Scientific Reports 6:28730.

Irati Kortabitarte | EurekAlert!

More articles from Life Sciences:

nachricht Rochester scientists discover gene controlling genetic recombination rates
23.04.2018 | University of Rochester

nachricht One step closer to reality
20.04.2018 | Max-Planck-Institut für Entwicklungsbiologie

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Molecules Brilliantly Illuminated

Physicists at the Laboratory for Attosecond Physics, which is jointly run by Ludwig-Maximilians-Universität and the Max Planck Institute of Quantum Optics, have developed a high-power laser system that generates ultrashort pulses of light covering a large share of the mid-infrared spectrum. The researchers envisage a wide range of applications for the technology – in the early diagnosis of cancer, for instance.

Molecules are the building blocks of life. Like all other organisms, we are made of them. They control our biorhythm, and they can also reflect our state of...

Im Focus: Spider silk key to new bone-fixing composite

University of Connecticut researchers have created a biodegradable composite made of silk fibers that can be used to repair broken load-bearing bones without the complications sometimes presented by other materials.

Repairing major load-bearing bones such as those in the leg can be a long and uncomfortable process.

Im Focus: Writing and deleting magnets with lasers

Study published in the journal ACS Applied Materials & Interfaces is the outcome of an international effort that included teams from Dresden and Berlin in Germany, and the US.

Scientists at the Helmholtz-Zentrum Dresden-Rossendorf (HZDR) together with colleagues from the Helmholtz-Zentrum Berlin (HZB) and the University of Virginia...

Im Focus: Gamma-ray flashes from plasma filaments

Novel highly efficient and brilliant gamma-ray source: Based on model calculations, physicists of the Max PIanck Institute for Nuclear Physics in Heidelberg propose a novel method for an efficient high-brilliance gamma-ray source. A giant collimated gamma-ray pulse is generated from the interaction of a dense ultra-relativistic electron beam with a thin solid conductor. Energetic gamma-rays are copiously produced as the electron beam splits into filaments while propagating across the conductor. The resulting gamma-ray energy and flux enable novel experiments in nuclear and fundamental physics.

The typical wavelength of light interacting with an object of the microcosm scales with the size of this object. For atoms, this ranges from visible light to...

Im Focus: Basel researchers succeed in cultivating cartilage from stem cells

Stable joint cartilage can be produced from adult stem cells originating from bone marrow. This is made possible by inducing specific molecular processes occurring during embryonic cartilage formation, as researchers from the University and University Hospital of Basel report in the scientific journal PNAS.

Certain mesenchymal stem/stromal cells from the bone marrow of adults are considered extremely promising for skeletal tissue regeneration. These adult stem...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

Invitation to the upcoming "Current Topics in Bioinformatics: Big Data in Genomics and Medicine"

13.04.2018 | Event News

Unique scope of UV LED technologies and applications presented in Berlin: ICULTA-2018

12.04.2018 | Event News

IWOLIA: A conference bringing together German Industrie 4.0 and French Industrie du Futur

09.04.2018 | Event News

 
Latest News

Structured light and nanomaterials open new ways to tailor light at the nanoscale

23.04.2018 | Physics and Astronomy

On the shape of the 'petal' for the dissipation curve

23.04.2018 | Physics and Astronomy

Clean and Efficient – Fraunhofer ISE Presents Hydrogen Technologies at the HANNOVER MESSE 2018

23.04.2018 | Trade Fair News

VideoLinks
Science & Research
Overview of more VideoLinks >>>