Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Discovery of two new species of primitive fishes discovered

31.03.2015

Working with an international team, paleontologists at the University of Zurich have discovered two new species of Saurichthys. The ~242 million year old predatory fishes were found in the fossil Lagerstätte Monte San Giorgio, in Ticino. They are distinct from previously known Saurichthys species in the shape of the head and body, suggesting different habitats and diet.

Saurichthys is a predatory fish characterized by a long thin body and a sharply pointed snout with numerous teeth. This distinctive ray-finned fish lived in marine and freshwater environments all over the world 252–201 million years ago during the Triassic period.


Life reconstruction of Saurichthys in the ancient sea of Middle Triassic.

Picture: University of Zurich/B. Scheffold


Saurichthys rieppeli, a new species of bony fish from the Middle Triassic of Monte San Giorgio, UNESCO world heritage in Southern Switzerland (length 60 cm).

Picture: University of Zurich

Two new species of this extinct fish have been discovered by paleontologists at the University of Zurich, working in collaboration with researchers in Germany and China. The first species, «Saurichthys breviabdominalis», is named for its relatively short body and the second, «Saurichthys rieppeli», is named after Olivier Rieppel, a Swiss paleontologist formerly based at the University of Zurich.

Including the new finds, there are now six species of Saurichthys known from Monte San Giorgio, making it both the most abundant and diverse fish at this classic Middle Triassic locality.

Evidence of different diet and habitat

Both 40 to 60 cm long fishes differ from other species of Saurichthys in skull and body shape. “These differences indicate different hunting styles and habitats in the shallow sea. This enabled multiple species to co-exist”, clarified Heinz Furrer, paleontologist at the University of Zurich and author of this research project.

According to Furrer, the ability to occupy multiple specialized feeding and habitat niches may be responsible for the evolutionary success of these fishes, both in the Monte San Giorgio basin and globally.

Monte San Giorgio is world-renowned for its beautifully preserved fossils from the Middle Triassic time (~239–243 million years ago). Large-scale excavations conducted by the University of Zürich between 1924 and 2004 yielded a substantial number of fossil reptiles and fishes. As part of a research project funded by the Swiss National Science Foundation, scientists at the Paleontological Institute and Museum, University of Zurich have prepared and studied over a hundred well-preserved specimens over the last three years.

Reference:
Maxwell, E.E., Romano, C., Wu, F. & Furrer, H. 2014: Two new species of Saurichthys (Actinopterygii: Saurichthyidae) from the Middle Triassic of Monte San Giorgio, Switzerland, with implications for character evolution in the genus. Zoological Journal of the Linnean Society 173/4. doi: 10.1111/zoj.12224

Contacts:
Dr. Heinz Furrer
Paläontologisches Institut und Museum
Universität Zürich
Tel: +41 79 328 26 66
E-Mail: heinz.furrer-paleo@bluewin.ch

Dr. Erin Maxwell
Staatliches Museum für Naturkunde
Stuttgart
Tel. +49 711 8936 145
E-Mail: erin.maxwell@smns-bw.de

Weitere Informationen:

http://www.mediadesk.uzh.ch

Nathalie Huber | Universität Zürich

More articles from Life Sciences:

nachricht Cryo-electron microscopy achieves unprecedented resolution using new computational methods
24.03.2017 | DOE/Lawrence Berkeley National Laboratory

nachricht How cheetahs stay fit and healthy
24.03.2017 | Forschungsverbund Berlin e.V.

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Giant Magnetic Fields in the Universe

Astronomers from Bonn and Tautenburg in Thuringia (Germany) used the 100-m radio telescope at Effelsberg to observe several galaxy clusters. At the edges of these large accumulations of dark matter, stellar systems (galaxies), hot gas, and charged particles, they found magnetic fields that are exceptionally ordered over distances of many million light years. This makes them the most extended magnetic fields in the universe known so far.

The results will be published on March 22 in the journal „Astronomy & Astrophysics“.

Galaxy clusters are the largest gravitationally bound structures in the universe. With a typical extent of about 10 million light years, i.e. 100 times the...

Im Focus: Tracing down linear ubiquitination

Researchers at the Goethe University Frankfurt, together with partners from the University of Tübingen in Germany and Queen Mary University as well as Francis Crick Institute from London (UK) have developed a novel technology to decipher the secret ubiquitin code.

Ubiquitin is a small protein that can be linked to other cellular proteins, thereby controlling and modulating their functions. The attachment occurs in many...

Im Focus: Perovskite edges can be tuned for optoelectronic performance

Layered 2D material improves efficiency for solar cells and LEDs

In the eternal search for next generation high-efficiency solar cells and LEDs, scientists at Los Alamos National Laboratory and their partners are creating...

Im Focus: Polymer-coated silicon nanosheets as alternative to graphene: A perfect team for nanoelectronics

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are less stable. Now researchers at the Technical University of Munich (TUM) have, for the first time ever, produced a composite material combining silicon nanosheets and a polymer that is both UV-resistant and easy to process. This brings the scientists a significant step closer to industrial applications like flexible displays and photosensors.

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are...

Im Focus: Researchers Imitate Molecular Crowding in Cells

Enzymes behave differently in a test tube compared with the molecular scrum of a living cell. Chemists from the University of Basel have now been able to simulate these confined natural conditions in artificial vesicles for the first time. As reported in the academic journal Small, the results are offering better insight into the development of nanoreactors and artificial organelles.

Enzymes behave differently in a test tube compared with the molecular scrum of a living cell. Chemists from the University of Basel have now been able to...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

International Land Use Symposium ILUS 2017: Call for Abstracts and Registration open

20.03.2017 | Event News

CONNECT 2017: International congress on connective tissue

14.03.2017 | Event News

ICTM Conference: Turbine Construction between Big Data and Additive Manufacturing

07.03.2017 | Event News

 
Latest News

Argon is not the 'dope' for metallic hydrogen

24.03.2017 | Materials Sciences

Astronomers find unexpected, dust-obscured star formation in distant galaxy

24.03.2017 | Physics and Astronomy

Gravitational wave kicks monster black hole out of galactic core

24.03.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>