Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Discovery of a Key Regulatory Gene in Cardiac Valve Formation

24.05.2017

Researchers from the University of Basel in Switzerland have identified a key regulator gene for the formation of cardiac valves - a process crucial to normal embryonic heart development. These results are published in the journal Cell Reports today.

The heart is the first functional organ that develops in vertebrate embryos. In humans, it starts to beat four weeks into the pregnancy. Unfortunately, congenital heart disease is one of the most common developmental abnormalities and the leading cause of birth defect-related deaths. These heart defects often involve malformations of cardiac valves, which are required to regulate the pressure and flow of blood in the cardiac chambers.

Unexpected role for HAND2 transcription factor in cardiac valve formation

A research team led by Prof. Zeller and Dr. Zuniga from the University of Basel has identified the so-called HAND2 gene as a key regulator that triggers the formation of cardiac valves in mouse embryos, a process that is crucial for normal heart development. Previous research using mouse models lacking HAND2 had shown that this gene regulates outflow tract and right ventricle development.

The researchers thus set out to identify the set of genes that are controlled by HAND2 in developing mouse hearts. In doing so, they identified a previously unknown heart defect in mouse embryos lacking HAND2. The mutant hearts lack the cardiac cushions, which would normally develop into cardiac valves. Normally, the cells contributing to these cushions undergo complex cellular rearrangements as they detach from the lining of the heart wall and migrate into the cushions to “fill them up”. As this mechanism is crucial for heart development, the researchers investigated how HAND2 controls this fundamental event during cardiac valve development.

HAND2 controlled gene network

In humans, defects in valve formation underlie different congenital heart malformations but the molecular mechanisms controlling heart valve development are not well understood. By studying mouse embryos, the research group has now identified the network of genes directly controlled by HAND2 that regulates cardiac valve formation.

The discovery of the HAND2 controlled gene network is of general relevance as mutations in HAND2 have recently been linked to heart valve malformations in human patients. «Not only does this discovery advance our molecular knowledge of cardiac valve development, but it may also help to provide genetic diagnosis for patients that suffer from congenital heart malformations,» says first author Fréderic Laurent of the Department of Biomedicine.

Engineering valves from stem cells

Heart valve replacements are among the most common cardiac surgeries performed and one of the future promises of biomedical research is to engineer replacement valves from stem cells. The discovery that HAND2 is a key regulator of the cellular and gene regulatory processes underlying heart valve formation is a potential milestone in this direction.

Original source

Frédéric Laurent, Ausra Girdziusaite, Julie Gamart, Iros Barozzi, Marco Osterwalder, Jennifer A. Akiyama, Joy Lincoln, Javier Lopez-Rios, Axel Visel, Aimée Zuniga, and Rolf Zeller
HAND2 Target Gene Regulatory Networks Control Atrioventricular Canal and Cardiac Valve Development
Cell Reports 19 (2017) | DOI: http://dx.doi.org/10.1016/j.celrep.2017.05.004

Further information

Rolf Zeller and Aimée Zuniga, University of Basel, Department of Biomedicine, Tel. +41 61 207 50 31, email: rolf.zeller@unibas.ch and aimee.zuniga@unibas.ch

Olivia Poisson | Universität Basel
Further information:
http://www.unibas.ch

Further reports about: Discovery Valve embryos gene network heart development mouse embryos stem cells

More articles from Life Sciences:

nachricht New catalyst controls activation of a carbon-hydrogen bond
21.11.2017 | Emory Health Sciences

nachricht The main switch
21.11.2017 | Albert-Ludwigs-Universität Freiburg im Breisgau

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Nanoparticles help with malaria diagnosis – new rapid test in development

The WHO reports an estimated 429,000 malaria deaths each year. The disease mostly affects tropical and subtropical regions and in particular the African continent. The Fraunhofer Institute for Silicate Research ISC teamed up with the Fraunhofer Institute for Molecular Biology and Applied Ecology IME and the Institute of Tropical Medicine at the University of Tübingen for a new test method to detect malaria parasites in blood. The idea of the research project “NanoFRET” is to develop a highly sensitive and reliable rapid diagnostic test so that patient treatment can begin as early as possible.

Malaria is caused by parasites transmitted by mosquito bite. The most dangerous form of malaria is malaria tropica. Left untreated, it is fatal in most cases....

Im Focus: A “cosmic snake” reveals the structure of remote galaxies

The formation of stars in distant galaxies is still largely unexplored. For the first time, astron-omers at the University of Geneva have now been able to closely observe a star system six billion light-years away. In doing so, they are confirming earlier simulations made by the University of Zurich. One special effect is made possible by the multiple reflections of images that run through the cosmos like a snake.

Today, astronomers have a pretty accurate idea of how stars were formed in the recent cosmic past. But do these laws also apply to older galaxies? For around a...

Im Focus: Visual intelligence is not the same as IQ

Just because someone is smart and well-motivated doesn't mean he or she can learn the visual skills needed to excel at tasks like matching fingerprints, interpreting medical X-rays, keeping track of aircraft on radar displays or forensic face matching.

That is the implication of a new study which shows for the first time that there is a broad range of differences in people's visual ability and that these...

Im Focus: Novel Nano-CT device creates high-resolution 3D-X-rays of tiny velvet worm legs

Computer Tomography (CT) is a standard procedure in hospitals, but so far, the technology has not been suitable for imaging extremely small objects. In PNAS, a team from the Technical University of Munich (TUM) describes a Nano-CT device that creates three-dimensional x-ray images at resolutions up to 100 nanometers. The first test application: Together with colleagues from the University of Kassel and Helmholtz-Zentrum Geesthacht the researchers analyzed the locomotory system of a velvet worm.

During a CT analysis, the object under investigation is x-rayed and a detector measures the respective amount of radiation absorbed from various angles....

Im Focus: Researchers Develop Data Bus for Quantum Computer

The quantum world is fragile; error correction codes are needed to protect the information stored in a quantum object from the deteriorating effects of noise. Quantum physicists in Innsbruck have developed a protocol to pass quantum information between differently encoded building blocks of a future quantum computer, such as processors and memories. Scientists may use this protocol in the future to build a data bus for quantum computers. The researchers have published their work in the journal Nature Communications.

Future quantum computers will be able to solve problems where conventional computers fail today. We are still far away from any large-scale implementation,...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Ecology Across Borders: International conference brings together 1,500 ecologists

15.11.2017 | Event News

Road into laboratory: Users discuss biaxial fatigue-testing for car and truck wheel

15.11.2017 | Event News

#Berlin5GWeek: The right network for Industry 4.0

30.10.2017 | Event News

 
Latest News

Previous evidence of water on mars now identified as grainflows

21.11.2017 | Physics and Astronomy

NASA's James Webb Space Telescope completes final cryogenic testing

21.11.2017 | Physics and Astronomy

New catalyst controls activation of a carbon-hydrogen bond

21.11.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>