Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:


Discovering the structure of RNA


A new study develops an innovative simulation model able to efficiently predict the conformation of ribonucleic acid molecules opening up interesting opportunities for application and research

It is the less known member of the nucleic acid family, superseded in popularity by its cousin DNA. And yet RNA, or ribonucleic acid, plays an essential role in many biological processes: not only as messenger molecule with the task of transmitting genetic information from the nucleus to the cytoplasm for protein production, but also as protagonist of different and significantly important cellular mechanisms.

A new study develops an innovative simulation model able to efficiently predict the conformation of ribonucleic acid molecules, opening up interesting opportunities for application and research

Credit: Simon Poblete

In many of these, its structure plays a crucial role. Structure is different and characteristic for each RNA depending on the sequence of specific units, known as nucleotides, which compose it like the links of a chain.

A research team at SISSA, led by Professor Giovanni Bussi, has developed a computerised simulation model which can effectively predict the three-dimensional conformation of the RNA filament starting from a sequence of nucleotides. The lead author of the study, just published in the journal Nucleic Acids Research, is SISSA researcher Simón Poblete. The work promises to have a significant impact in the research and application field.

«RNA structure is a crucial factor for many of its functions», explains Giovanni Bussi. «The experimental determination of RNA structures may take years, which is why there is great interest in developing methods to predict its structure. Until today, predictive models have concentrated primarily on the study of RNA parts which form double helices.

However, the RNA filament can take specific and complex conformations governed by the so-called "non-canonical" interactions, which are very different from those predicted by Watson-Crick's double helix model for DNA».

Current simulation models, says Bussi, «work very well: starting from one sequence they are able to envisage a variety of possible structures. The problem is that they are unable to tell which is the right structure among many. Our model, which uses a simplified representation of RNA and has been designed explicitly to correctly predict non-canonical interactions, has proven very efficient in this regard».

To test its quality, researchers have used it to predict the structure of RNA molecules whose three-dimensional conformation is known, starting from the knowledge of the sequence alone. «Comparing our predictions with known structures, we have understood that our approach really works» confirms Giovanni Bussi.

This can have an important impact on basic research, to help shed light on the relationship between structure and function of these molecules, but also on application realms, above all in the medical and therapeutic sector.

Bussi adds: «RNA is particularly interesting for its practical implications; once a RNA molecule has been identified, as many molecules as desired can be obtained with little effort and identical to the first one by means of a fast and low-cost replication process. If, for example, we were able to find the RNA molecule able to trigger precise processes within the organism with important therapeutic effects due to its specific structure, this would open up truly unheard-of prospects».

Media Contact

Donato Ramani

Donato Ramani | EurekAlert!

More articles from Life Sciences:

nachricht Molecular doorstop could be key to new tuberculosis drugs
20.03.2018 | Rockefeller University

nachricht Modified biomaterials self-assemble on temperature cues
20.03.2018 | Duke University

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Mars' oceans formed early, possibly aided by massive volcanic eruptions

Oceans formed before Tharsis and evolved together, shaping climate history of Mars

A new scenario seeking to explain how Mars' putative oceans came and went over the last 4 billion years implies that the oceans formed several hundred million...

Im Focus: Tiny implants for cells are functional in vivo

For the first time, an interdisciplinary team from the University of Basel has succeeded in integrating artificial organelles into the cells of live zebrafish embryos. This innovative approach using artificial organelles as cellular implants offers new potential in treating a range of diseases, as the authors report in an article published in Nature Communications.

In the cells of higher organisms, organelles such as the nucleus or mitochondria perform a range of complex functions necessary for life. In the networks of...

Im Focus: Locomotion control with photopigments

Researchers from Göttingen University discover additional function of opsins

Animal photoreceptors capture light with photopigments. Researchers from the University of Göttingen have now discovered that these photopigments fulfill an...

Im Focus: Surveying the Arctic: Tracking down carbon particles

Researchers embark on aerial campaign over Northeast Greenland

On 15 March, the AWI research aeroplane Polar 5 will depart for Greenland. Concentrating on the furthest northeast region of the island, an international team...

Im Focus: Unique Insights into the Antarctic Ice Shelf System

Data collected on ocean-ice interactions in the little-researched regions of the far south

The world’s second-largest ice shelf was the destination for a Polarstern expedition that ended in Punta Arenas, Chile on 14th March 2018. Oceanographers from...

All Focus news of the innovation-report >>>



Industry & Economy
Event News

Virtual reality conference comes to Reutlingen

19.03.2018 | Event News

Ultrafast Wireless and Chip Design at the DATE Conference in Dresden

16.03.2018 | Event News

International Tinnitus Conference of the Tinnitus Research Initiative in Regensburg

13.03.2018 | Event News

Latest News

Physicists made crystal lattice from polaritons

20.03.2018 | Physics and Astronomy

Mars' oceans formed early, possibly aided by massive volcanic eruptions

20.03.2018 | Physics and Astronomy

Thawing permafrost produces more methane than expected

20.03.2018 | Earth Sciences

Science & Research
Overview of more VideoLinks >>>