Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Diffusion 2.0

02.11.2017

The theory about particle transport through ionic channels and nanopores needs to be rewritten. NIM scientist Prof Peter Hänggi and his team prove their breakthrough research with simulations and experiments on particle diffusion in channel models.

The phenomenon of diffusion is omnipresent and crucial basis of many every-day processes. Diffusion plays a central role for the transport of very small particles. The investigation of Brownian motions by Einstein, Sutherland and Smoluchowski was the foundation of all further research on diffusion processes, also for Prof Peter Hänggi from the University of Augsburg.


Sketch of the experimental setup for a passive particle diffusing in a corrugated channel.

© Universität Augsburg (IfP)/PNAS

Passing the channel

Scientists from various fields such as physics, chemistry and biology are especially interested in the transport through natural and artificial ionic channels and nanopores. Unavoidable component of all channel structures are confining boundaries. The surface of such boundaries are typically not smooth but exhibit rather complex shapes.

Those structural features affect the spontaneous particle zig-zag movements, jittery Brownian motions, on a molecular level. On one hand, there are direct microparticle interactions with the environment, boundaries and surrounding fluid, of attracting and repelling nature altering the transport velocity. On the other hand, the available phase space for motions along the transport direction is limited and determines it, and therefore induces entropic effects.

Hydrodynamic effects were notoriously difficult, if not impossible to explore quantitatively, as the ubiquitous attracting and repelling interactions of corrugated surfaces are hard to model. Solely entropic effects were involved in analytical calculations although they did not mirror the system in its entirety.

Time- and place-dependency of predictions

For the first time, Prof Hänggi and his research group were able to analyze and quantify hydrodynamic effects from theoretical models and experimental set-ups. Their results strongly suggest a reformulation of the existing theories on channel models. In their study, they measured the mean diffusion time and its variances of spherical particles immersed in water inside corrugated channels.

There are three main results representing new milestones for future research on small-scale motion analysis. They could validate the entropic theory in channels that are much wider than the particles radius, and disprove previous simulations of narrow channels. There, hydrodynamic effects can substantially influence the transport velocity of particles.

The mean diffusion time could be 40 % higher than the prediction of the entropic theory tells. Surprisingly, in those narrow channels, the validity of the entropic theory is restored upon using an experimentally determined, spatially dependent effective diffusion coefficient instead of the Stokes-Einstein diffusion coefficient to include the complexity of the hydrodynamic interactions with corrugated confinement.

Publication:

Hydrodynamic and entropic effects on colloidal diffusion in corrugated channels.
Yang X, Liu C, Li Y, Marchesoni F, Hänggi P, Zhang HP.
PNAS 2017 Sep 5;114(36):9564-9569. DOI: 10.1073/pnas.1707815114
(Web-Link of the publication: http://www.pnas.org/content/114/36/9564.abstract)

Contact:

Prof. Dr. Dr. h. c. mult. Peter Hänggi
Physics Department
University of Augsburg
86135 Augsburg
Germany
Fon: +49 (0)821-598-3250
Hanggi@physik.uni-augsburg.de
http://www.physik.uni-augsburg.de/theo1/hanggi/

Klaus P. Prem | idw - Informationsdienst Wissenschaft
Further information:
http://www.uni-augsburg.de/

More articles from Life Sciences:

nachricht More genes are active in high-performance maize
19.01.2018 | Rheinische Friedrich-Wilhelms-Universität Bonn

nachricht How plants see light
19.01.2018 | Albert-Ludwigs-Universität Freiburg im Breisgau

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Artificial agent designs quantum experiments

On the way to an intelligent laboratory, physicists from Innsbruck and Vienna present an artificial agent that autonomously designs quantum experiments. In initial experiments, the system has independently (re)discovered experimental techniques that are nowadays standard in modern quantum optical laboratories. This shows how machines could play a more creative role in research in the future.

We carry smartphones in our pockets, the streets are dotted with semi-autonomous cars, but in the research laboratory experiments are still being designed by...

Im Focus: Scientists decipher key principle behind reaction of metalloenzymes

So-called pre-distorted states accelerate photochemical reactions too

What enables electrons to be transferred swiftly, for example during photosynthesis? An interdisciplinary team of researchers has worked out the details of how...

Im Focus: The first precise measurement of a single molecule's effective charge

For the first time, scientists have precisely measured the effective electrical charge of a single molecule in solution. This fundamental insight of an SNSF Professor could also pave the way for future medical diagnostics.

Electrical charge is one of the key properties that allows molecules to interact. Life itself depends on this phenomenon: many biological processes involve...

Im Focus: Paradigm shift in Paris: Encouraging an holistic view of laser machining

At the JEC World Composite Show in Paris in March 2018, the Fraunhofer Institute for Laser Technology ILT will be focusing on the latest trends and innovations in laser machining of composites. Among other things, researchers at the booth shared with the Aachen Center for Integrative Lightweight Production (AZL) will demonstrate how lasers can be used for joining, structuring, cutting and drilling composite materials.

No other industry has attracted as much public attention to composite materials as the automotive industry, which along with the aerospace industry is a driver...

Im Focus: Room-temperature multiferroic thin films and their properties

Scientists at Tokyo Institute of Technology (Tokyo Tech) and Tohoku University have developed high-quality GFO epitaxial films and systematically investigated their ferroelectric and ferromagnetic properties. They also demonstrated the room-temperature magnetocapacitance effects of these GFO thin films.

Multiferroic materials show magnetically driven ferroelectricity. They are attracting increasing attention because of their fascinating properties such as...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

10th International Symposium: “Advanced Battery Power – Kraftwerk Batterie” Münster, 10-11 April 2018

08.01.2018 | Event News

See, understand and experience the work of the future

11.12.2017 | Event News

Innovative strategies to tackle parasitic worms

08.12.2017 | Event News

 
Latest News

Let the good tubes roll

19.01.2018 | Materials Sciences

How cancer metastasis happens: Researchers reveal a key mechanism

19.01.2018 | Health and Medicine

Meteoritic stardust unlocks timing of supernova dust formation

19.01.2018 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>