Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Diabetes: new hope for better wound healing

11.10.2016

Diabetics often have to contend with wounds that heal poorly. Researchers at the
Max Planck Institute for Biology of Ageing, the CMMC, the CECAD Excellence Cluster and the Institute of Genetics of the University of Cologne have now gained new insights into the underlying cellular mechanisms. Their findings could lead to the development of new treatment methods.

According to estimates by the International Diabetes Federation (IDF), some six million people in Germany suffer from diabetes mellitus, around 90 percent of whom have the type 2 form. The disease, which is triggered by a disturbance of insulin metabolism, has serious effects on the entire body. One problem these patients face is poor wound healing.


Time-lapse of a wound healing in Drosophila (from left to right): After removal of the nucleus (in yellow) the cell membrane (in pink) seals off the gap caused by the wound.

Max Planck Institut for Biology of Ageing

It had previously been assumed that high levels of glucose in the blood damages vessels and neurons and impairs the immune system, thereby accounting for the wound-healing problems. A Cologne-based research group headed by Linda Partridge, Director of the Max Planck Institute for Biology of Ageing, and Maria Leptin, professor at the Institute of Genetics of the University of Cologne, has now presented in a study that slowed insulin metabolism at the wound site directly affects neighbouring cells involved in wound healing.

Investigations of fly skin

Parisa Kakanj, the author of the study, examined the skin of larvae of the fruit fly Drosophila melanogaster. These flies serve as models for diabetes, because insulin metabolism has been strongly conserved over the course of evolution, meaning that flies and mammals are very similar in this respect. Using a precision laser, Kakanj removed a cell from the outermost skin layer of fruit fly larvae and then observed what happens in the neighbouring cells live under the microscope.

“Immediately after a skin injury, the neighbouring cells respond by forming an actomyosin cable,” Kakanj explains. The cable consists of proteins that otherwise occur in muscle fibres, where they are responsible for muscular contraction. After an injury, the cable forms a contractile ring around the wound. It then contracts, sealing off the gap caused by the wound. “However, if insulin metabolism is impaired, as in our genetically modified flies, the cable is weaker and forms much later. This results in incomplete or slow wound healing,” as Kakanj relates.

Local treatment for better wound healing

New treatments for impaired wound healing could precisely target this mechanism. “Our findings raise hope of a potential treatment for diabetics. In future, it may be possible to treat wound sites with drugs that locally activate insulin metabolism,” Kakanj explains. The research team is now working closely with Sabine Eming, a senior dermatologist at the clinic and polyclinic for dermatology and venereology at the University Hospital Cologne, the CMMC and the Excellence Cluster for Ageing Research at the University of Cologne in order to investigate ways to implement this approach.

Weitere Informationen:

http://www.age.mpg.de

https://www.youtube.com/watch?v=B7OOFMeHjMA

Dr. Maren Berghoff | Max-Planck-Institut für Biologie des Alterns

More articles from Life Sciences:

nachricht Cryo-electron microscopy achieves unprecedented resolution using new computational methods
24.03.2017 | DOE/Lawrence Berkeley National Laboratory

nachricht How cheetahs stay fit and healthy
24.03.2017 | Forschungsverbund Berlin e.V.

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Giant Magnetic Fields in the Universe

Astronomers from Bonn and Tautenburg in Thuringia (Germany) used the 100-m radio telescope at Effelsberg to observe several galaxy clusters. At the edges of these large accumulations of dark matter, stellar systems (galaxies), hot gas, and charged particles, they found magnetic fields that are exceptionally ordered over distances of many million light years. This makes them the most extended magnetic fields in the universe known so far.

The results will be published on March 22 in the journal „Astronomy & Astrophysics“.

Galaxy clusters are the largest gravitationally bound structures in the universe. With a typical extent of about 10 million light years, i.e. 100 times the...

Im Focus: Tracing down linear ubiquitination

Researchers at the Goethe University Frankfurt, together with partners from the University of Tübingen in Germany and Queen Mary University as well as Francis Crick Institute from London (UK) have developed a novel technology to decipher the secret ubiquitin code.

Ubiquitin is a small protein that can be linked to other cellular proteins, thereby controlling and modulating their functions. The attachment occurs in many...

Im Focus: Perovskite edges can be tuned for optoelectronic performance

Layered 2D material improves efficiency for solar cells and LEDs

In the eternal search for next generation high-efficiency solar cells and LEDs, scientists at Los Alamos National Laboratory and their partners are creating...

Im Focus: Polymer-coated silicon nanosheets as alternative to graphene: A perfect team for nanoelectronics

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are less stable. Now researchers at the Technical University of Munich (TUM) have, for the first time ever, produced a composite material combining silicon nanosheets and a polymer that is both UV-resistant and easy to process. This brings the scientists a significant step closer to industrial applications like flexible displays and photosensors.

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are...

Im Focus: Researchers Imitate Molecular Crowding in Cells

Enzymes behave differently in a test tube compared with the molecular scrum of a living cell. Chemists from the University of Basel have now been able to simulate these confined natural conditions in artificial vesicles for the first time. As reported in the academic journal Small, the results are offering better insight into the development of nanoreactors and artificial organelles.

Enzymes behave differently in a test tube compared with the molecular scrum of a living cell. Chemists from the University of Basel have now been able to...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

International Land Use Symposium ILUS 2017: Call for Abstracts and Registration open

20.03.2017 | Event News

CONNECT 2017: International congress on connective tissue

14.03.2017 | Event News

ICTM Conference: Turbine Construction between Big Data and Additive Manufacturing

07.03.2017 | Event News

 
Latest News

Argon is not the 'dope' for metallic hydrogen

24.03.2017 | Materials Sciences

Astronomers find unexpected, dust-obscured star formation in distant galaxy

24.03.2017 | Physics and Astronomy

Gravitational wave kicks monster black hole out of galactic core

24.03.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>