Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Detecting Alzheimer's disease earlier using ... Greebles?

11.04.2017

Difficulty distinguishing novel objects is associated with family history of Alzheimer's disease

Unique graphic characters called Greebles may prove to be valuable tools in detecting signs of Alzheimer's disease decades before symptoms become apparent.


Which Greeble is different?

Greeble images courtesy of Michael J. Tarr, Center for the Neural Basis of Cognition and Department of Psychology, Carnegie Mellon University, http://www.tarrlab.org/

In an article published online last week in Journal of Alzheimer's Disease, Emily Mason, Ph.D., a postdoctoral associate in the Department of Neurological Surgery at the University of Louisville, reported research showing that cognitively normal people who have a genetic predisposition for Alzheimer's disease (AD) have more difficulty distinguishing among novel figures called Greebles than individuals without genetic predisposition.

Alzheimer's disease (AD) is a progressive, irreversible neurodegenerative disease characterized by declining memory, cognition and behavior. AD is the most prevalent form of dementia, affecting an estimated 5.5 million individuals in the United States and accounting for 60 to 80 percent of dementia cases. The ability to detect the disease earlier may allow researchers to develop treatments to combat the disease.

"Right now, by the time we can detect the disease, it would be very difficult to restore function because so much damage has been done to the brain," Mason said. "We want to be able to look at really early, really subtle changes that are going on in the brain. One way we can do that is with cognitive testing that is directed at a very specific area of the brain."

AD is characterized by the presence of beta amyloid plaques and tau neurofibrillary tangles in the brain. Tau tangles predictably develop first in the perirhinal and entorhinal cortices of the brain, areas that play a role in visual recognition and memory. Mason and her colleagues developed cognitive tests designed to detect subtle deficiencies in these cognitive functions. They hoped to determine whether changes in these functions would indicate the presence of tau tangles before they could be detected through imaging or general cognitive testing.

Working in her previous position at Vanderbilt University, Mason identified test subjects age 40-60 who were considered at-risk for AD due to having at least one biological parent diagnosed with the disease. She also tested a control group of individuals in the same age range whose immediate family history did not include AD.

The subjects completed a series of "odd-man-out" tasks in which they were shown sets of four images depicting real-world objects, human faces, scenes and Greebles in which one image was slightly different than the other three. The subjects were asked to identify the image that was different.

The at-risk and control groups performed at similar levels for the objects, faces and scenes. For the Greebles, however, the at-risk group scored lower in their ability to identify differences in the images. Individuals in the at-risk group correctly identified the distinct Greeble 78 percent of the time, whereas the control group correctly identified the odd Greeble 87 percent of the time.

"Most people have never seen a Greeble and Greebles are highly similar, so they are by far the toughest objects to differentiate," Mason said. "What we found is that using this task, we were able to find a significant difference between the at-risk group and the control group. Both groups did get better with practice, but the at-risk group lagged behind the control group throughout the process."

Mason would like to see further research to determine whether the individuals who performed poorly on the test actually developed AD in the future.

"The best thing we could do is have people take this test in their 40s and 50s, and track them for the next 10 or 20 years to see who eventually develops the disease and who doesn't," Mason said.

In recent years, a great deal of research has focused on identifying early biomarkers of Alzheimer's disease. However, not everyone who has an individual biomarker ultimately develops the disease. Brandon Ally, Ph.D., assistant professor of neurological surgery at UofL and senior author of the publication, said the tests with Greebles can provide a cost-effective way to identify individuals who may be in the early stages of AD, as well as a tool for following those individuals over time.

"We are not proposing that the identification of novel objects such as Greebles is a definitive marker of the disease, but when paired with some of the novel biomarkers and a solid clinical history, it may improve our diagnostic acumen in early high-risk individuals," Ally said. "As prevention methods, vaccines or disease modifying drugs become available, markers like novel object detection may help to identify the high priority candidates."

Robert P. Friedland, M.D., professor and Mason and Mary Rudd Endowed Chair in Neurology at UofL, has studied clinical and biological issues in Alzheimer's disease and related disorders for 35 years. He believes that early detection will enhance the ability of patients and physicians to employ lifestyle and therapeutic interventions.

"This work shows that the effects of Alzheimer's disease on cognition can be measured decades before the onset of dementia," Friedland said. "The fact that the disease takes so long to develop provides us with an opportunity to slow its progression through attention to the many factors that are linked to the disease, such as a sedentary lifestyle, a high fat diet, obesity, head injury, smoking, and a lack of mental and social engagement."

###

The article, "Family history of Alzheimer's disease is associated with impaired perceptual discrimination of novel objects," will appear in the Journal of Alzheimer's Disease, Volume 57, Issue 2.

ANSWER: Greeble No. 4 is different.

Media Contact

Betty Coffman
betty.coffman@louisville.edu
502-852-4573

http://www.louisville.edu 

Betty Coffman | EurekAlert!

Further reports about: Biomarkers dementia form of dementia genetic predisposition

More articles from Life Sciences:

nachricht Nerves control the body’s bacterial community
26.09.2017 | Christian-Albrechts-Universität zu Kiel

nachricht Ageless ears? Elderly barn owls do not become hard of hearing
26.09.2017 | Carl von Ossietzky-Universität Oldenburg

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: The fastest light-driven current source

Controlling electronic current is essential to modern electronics, as data and signals are transferred by streams of electrons which are controlled at high speed. Demands on transmission speeds are also increasing as technology develops. Scientists from the Chair of Laser Physics and the Chair of Applied Physics at Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU) have succeeded in switching on a current with a desired direction in graphene using a single laser pulse within a femtosecond ¬¬ – a femtosecond corresponds to the millionth part of a billionth of a second. This is more than a thousand times faster compared to the most efficient transistors today.

Graphene is up to the job

Im Focus: LaserTAB: More efficient and precise contacts thanks to human-robot collaboration

At the productronica trade fair in Munich this November, the Fraunhofer Institute for Laser Technology ILT will be presenting Laser-Based Tape-Automated Bonding, LaserTAB for short. The experts from Aachen will be demonstrating how new battery cells and power electronics can be micro-welded more efficiently and precisely than ever before thanks to new optics and robot support.

Fraunhofer ILT from Aachen relies on a clever combination of robotics and a laser scanner with new optics as well as process monitoring, which it has developed...

Im Focus: The pyrenoid is a carbon-fixing liquid droplet

Plants and algae use the enzyme Rubisco to fix carbon dioxide, removing it from the atmosphere and converting it into biomass. Algae have figured out a way to increase the efficiency of carbon fixation. They gather most of their Rubisco into a ball-shaped microcompartment called the pyrenoid, which they flood with a high local concentration of carbon dioxide. A team of scientists at Princeton University, the Carnegie Institution for Science, Stanford University and the Max Plank Institute of Biochemistry have unravelled the mysteries of how the pyrenoid is assembled. These insights can help to engineer crops that remove more carbon dioxide from the atmosphere while producing more food.

A warming planet

Im Focus: Highly precise wiring in the Cerebral Cortex

Our brains house extremely complex neuronal circuits, whose detailed structures are still largely unknown. This is especially true for the so-called cerebral cortex of mammals, where among other things vision, thoughts or spatial orientation are being computed. Here the rules by which nerve cells are connected to each other are only partly understood. A team of scientists around Moritz Helmstaedter at the Frankfiurt Max Planck Institute for Brain Research and Helene Schmidt (Humboldt University in Berlin) have now discovered a surprisingly precise nerve cell connectivity pattern in the part of the cerebral cortex that is responsible for orienting the individual animal or human in space.

The researchers report online in Nature (Schmidt et al., 2017. Axonal synapse sorting in medial entorhinal cortex, DOI: 10.1038/nature24005) that synapses in...

Im Focus: Tiny lasers from a gallery of whispers

New technique promises tunable laser devices

Whispering gallery mode (WGM) resonators are used to make tiny micro-lasers, sensors, switches, routers and other devices. These tiny structures rely on a...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

“Lasers in Composites Symposium” in Aachen – from Science to Application

19.09.2017 | Event News

I-ESA 2018 – Call for Papers

12.09.2017 | Event News

EMBO at Basel Life, a new conference on current and emerging life science research

06.09.2017 | Event News

 
Latest News

Nerves control the body’s bacterial community

26.09.2017 | Life Sciences

Four elements make 2-D optical platform

26.09.2017 | Physics and Astronomy

Goodbye, login. Hello, heart scan

26.09.2017 | Information Technology

VideoLinks
B2B-VideoLinks
More VideoLinks >>>