Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Desmoplakin’s Tail Gets the Message

02.03.2015

Cells control the adhesion protein desmoplakin by modifying the tail end of the protein, and this process goes awry in some patients with arrhythmogenic cardiomyopathy, according to a study in The Journal of Cell Biology.

Desmoplakin is a key component of the adhesive junctions, known as desmosomes, that link cells together in tissues that undergo severe strain, such as the heart and skin. Its role is to anchor parts of the cytoskeleton to sites of cell-to-cell contact.


Albrecht et al., 2015

Desmoplakin (green) normally resides at cell-to-cell junctions (left), but in cells that can’t modify it (right), it associates with intermediate filaments (red).

Kathleen Green and colleagues at Northwestern University Feinberg School of Medicine determined how modifying desmoplakin’s intracellular tail with phosphate and methyl groups affects the protein’s interaction with the cytoskeleton.

The enzyme GSK3 added phosphate groups to desmoplakin’s tail, and its loss spurred the protein to shift from desmosomes to the intermediate filaments. Blocking GSK3 slowed desmoplakin’s relocation from the intermediate filaments to the cells’ boundaries during desmosome formation.

Methylation of four arginine residues in desmoplakin’s tail had similar effects as phosphorylation. The team also found that methylation of one particular arginine, R2834, which is mutated in some patients with arrhythmogenic cardiomyopathy, was necessary for the phosphorylation of most tail serine residues because this modification drew GSK3 to desmoplakin. Mutating this arginine delayed desmoplakin’s assembly into desmosomes, weakening intercellular connections so that cell layers broke apart under mechanical stress.

The results show that phosphorylation and methylation make desmoplakin more dynamic. Cells might be able to fine-tune desmoplakin’s characteristics by adding and removing phosphates and methyl groups, and defects in this regulatory process might contribute to skin and heart diseases.

Albrecht, L.V., et al. 2015. J. Cell Biol. doi:10.1083/jcb.201406020

About The Journal of Cell Biology
The Journal of Cell Biology (JCB) is published by The Rockefeller University Press. All editorial decisions on manuscripts submitted are made by active scientists in conjunction with our in-house scientific editors. JCB content is posted to PubMed Central, where it is available to the public for free six months after publication. Authors retain copyright of their published works, and third parties may reuse the content for non-commercial purposes under a creative commons license.

For more information, please visit www.jcb.org .

Contact Information
Rita Sullivan King
Communications Manager
news@rupress.org
Phone: 212-327-8603

Rita Sullivan King | newswise

More articles from Life Sciences:

nachricht Nanoparticle Exposure Can Awaken Dormant Viruses in the Lungs
16.01.2017 | Helmholtz Zentrum München - Deutsches Forschungszentrum für Gesundheit und Umwelt

nachricht Cholera bacteria infect more effectively with a simple twist of shape
13.01.2017 | Princeton University

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Interfacial Superconductivity: Magnetic and superconducting order revealed simultaneously

Researchers from the University of Hamburg in Germany, in collaboration with colleagues from the University of Aarhus in Denmark, have synthesized a new superconducting material by growing a few layers of an antiferromagnetic transition-metal chalcogenide on a bismuth-based topological insulator, both being non-superconducting materials.

While superconductivity and magnetism are generally believed to be mutually exclusive, surprisingly, in this new material, superconducting correlations...

Im Focus: Studying fundamental particles in materials

Laser-driving of semimetals allows creating novel quasiparticle states within condensed matter systems and switching between different states on ultrafast time scales

Studying properties of fundamental particles in condensed matter systems is a promising approach to quantum field theory. Quasiparticles offer the opportunity...

Im Focus: Designing Architecture with Solar Building Envelopes

Among the general public, solar thermal energy is currently associated with dark blue, rectangular collectors on building roofs. Technologies are needed for aesthetically high quality architecture which offer the architect more room for manoeuvre when it comes to low- and plus-energy buildings. With the “ArKol” project, researchers at Fraunhofer ISE together with partners are currently developing two façade collectors for solar thermal energy generation, which permit a high degree of design flexibility: a strip collector for opaque façade sections and a solar thermal blind for transparent sections. The current state of the two developments will be presented at the BAU 2017 trade fair.

As part of the “ArKol – development of architecturally highly integrated façade collectors with heat pipes” project, Fraunhofer ISE together with its partners...

Im Focus: How to inflate a hardened concrete shell with a weight of 80 t

At TU Wien, an alternative for resource intensive formwork for the construction of concrete domes was developed. It is now used in a test dome for the Austrian Federal Railways Infrastructure (ÖBB Infrastruktur).

Concrete shells are efficient structures, but not very resource efficient. The formwork for the construction of concrete domes alone requires a high amount of...

Im Focus: Bacterial Pac Man molecule snaps at sugar

Many pathogens use certain sugar compounds from their host to help conceal themselves against the immune system. Scientists at the University of Bonn have now, in cooperation with researchers at the University of York in the United Kingdom, analyzed the dynamics of a bacterial molecule that is involved in this process. They demonstrate that the protein grabs onto the sugar molecule with a Pac Man-like chewing motion and holds it until it can be used. Their results could help design therapeutics that could make the protein poorer at grabbing and holding and hence compromise the pathogen in the host. The study has now been published in “Biophysical Journal”.

The cells of the mouth, nose and intestinal mucosa produce large quantities of a chemical called sialic acid. Many bacteria possess a special transport system...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

12V, 48V, high-voltage – trends in E/E automotive architecture

10.01.2017 | Event News

2nd Conference on Non-Textual Information on 10 and 11 May 2017 in Hannover

09.01.2017 | Event News

Nothing will happen without batteries making it happen!

05.01.2017 | Event News

 
Latest News

Water - as the underlying driver of the Earth’s carbon cycle

17.01.2017 | Earth Sciences

Interfacial Superconductivity: Magnetic and superconducting order revealed simultaneously

17.01.2017 | Materials Sciences

Smart homes will “LISTEN” to your voice

17.01.2017 | Architecture and Construction

VideoLinks
B2B-VideoLinks
More VideoLinks >>>