Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:


Desmoplakin’s Tail Gets the Message


Cells control the adhesion protein desmoplakin by modifying the tail end of the protein, and this process goes awry in some patients with arrhythmogenic cardiomyopathy, according to a study in The Journal of Cell Biology.

Desmoplakin is a key component of the adhesive junctions, known as desmosomes, that link cells together in tissues that undergo severe strain, such as the heart and skin. Its role is to anchor parts of the cytoskeleton to sites of cell-to-cell contact.

Albrecht et al., 2015

Desmoplakin (green) normally resides at cell-to-cell junctions (left), but in cells that can’t modify it (right), it associates with intermediate filaments (red).

Kathleen Green and colleagues at Northwestern University Feinberg School of Medicine determined how modifying desmoplakin’s intracellular tail with phosphate and methyl groups affects the protein’s interaction with the cytoskeleton.

The enzyme GSK3 added phosphate groups to desmoplakin’s tail, and its loss spurred the protein to shift from desmosomes to the intermediate filaments. Blocking GSK3 slowed desmoplakin’s relocation from the intermediate filaments to the cells’ boundaries during desmosome formation.

Methylation of four arginine residues in desmoplakin’s tail had similar effects as phosphorylation. The team also found that methylation of one particular arginine, R2834, which is mutated in some patients with arrhythmogenic cardiomyopathy, was necessary for the phosphorylation of most tail serine residues because this modification drew GSK3 to desmoplakin. Mutating this arginine delayed desmoplakin’s assembly into desmosomes, weakening intercellular connections so that cell layers broke apart under mechanical stress.

The results show that phosphorylation and methylation make desmoplakin more dynamic. Cells might be able to fine-tune desmoplakin’s characteristics by adding and removing phosphates and methyl groups, and defects in this regulatory process might contribute to skin and heart diseases.

Albrecht, L.V., et al. 2015. J. Cell Biol. doi:10.1083/jcb.201406020

About The Journal of Cell Biology
The Journal of Cell Biology (JCB) is published by The Rockefeller University Press. All editorial decisions on manuscripts submitted are made by active scientists in conjunction with our in-house scientific editors. JCB content is posted to PubMed Central, where it is available to the public for free six months after publication. Authors retain copyright of their published works, and third parties may reuse the content for non-commercial purposes under a creative commons license.

For more information, please visit .

Contact Information
Rita Sullivan King
Communications Manager
Phone: 212-327-8603

Rita Sullivan King | newswise

More articles from Life Sciences:

nachricht Novel mechanisms of action discovered for the skin cancer medication Imiquimod
21.10.2016 | Technische Universität München

nachricht Second research flight into zero gravity
21.10.2016 | Universität Zürich

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: New 3-D wiring technique brings scalable quantum computers closer to reality

Researchers from the Institute for Quantum Computing (IQC) at the University of Waterloo led the development of a new extensible wiring technique capable of controlling superconducting quantum bits, representing a significant step towards to the realization of a scalable quantum computer.

"The quantum socket is a wiring method that uses three-dimensional wires based on spring-loaded pins to address individual qubits," said Jeremy Béjanin, a PhD...

Im Focus: Scientists develop a semiconductor nanocomposite material that moves in response to light

In a paper in Scientific Reports, a research team at Worcester Polytechnic Institute describes a novel light-activated phenomenon that could become the basis for applications as diverse as microscopic robotic grippers and more efficient solar cells.

A research team at Worcester Polytechnic Institute (WPI) has developed a revolutionary, light-activated semiconductor nanocomposite material that can be used...

Im Focus: Diamonds aren't forever: Sandia, Harvard team create first quantum computer bridge

By forcefully embedding two silicon atoms in a diamond matrix, Sandia researchers have demonstrated for the first time on a single chip all the components needed to create a quantum bridge to link quantum computers together.

"People have already built small quantum computers," says Sandia researcher Ryan Camacho. "Maybe the first useful one won't be a single giant quantum computer...

Im Focus: New Products - Highlights of COMPAMED 2016

COMPAMED has become the leading international marketplace for suppliers of medical manufacturing. The trade fair, which takes place every November and is co-located to MEDICA in Dusseldorf, has been steadily growing over the past years and shows that medical technology remains a rapidly growing market.

In 2016, the joint pavilion by the IVAM Microtechnology Network, the Product Market “High-tech for Medical Devices”, will be located in Hall 8a again and will...

Im Focus: Ultra-thin ferroelectric material for next-generation electronics

'Ferroelectric' materials can switch between different states of electrical polarization in response to an external electric field. This flexibility means they show promise for many applications, for example in electronic devices and computer memory. Current ferroelectric materials are highly valued for their thermal and chemical stability and rapid electro-mechanical responses, but creating a material that is scalable down to the tiny sizes needed for technologies like silicon-based semiconductors (Si-based CMOS) has proven challenging.

Now, Hiroshi Funakubo and co-workers at the Tokyo Institute of Technology, in collaboration with researchers across Japan, have conducted experiments to...

All Focus news of the innovation-report >>>



Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

Agricultural Trade Developments and Potentials in Central Asia and the South Caucasus

14.10.2016 | Event News

World Health Summit – Day Three: A Call to Action

12.10.2016 | Event News

Latest News

Resolving the mystery of preeclampsia

21.10.2016 | Health and Medicine

Stanford researchers create new special-purpose computer that may someday save us billions

21.10.2016 | Information Technology

From ancient fossils to future cars

21.10.2016 | Materials Sciences

More VideoLinks >>>