Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Designer nanoparticles destroy a broad array of viruses

19.12.2017

Computational modeling key in design

Viral infections kill millions of people worldwide every year, but currently available antiviral drugs are limited in that they mostly act against one or a small handful of related viruses. A few broad-spectrum drugs that prevent viral entry into healthy cells exist, but they usually need to be taken continuously to prevent infection, and resistance through viral mutation is a serious risk.


A molecular dynamics model showing a nanoparticle binding to the outer envelope of the human papillomavirus.

Credit: Petr Kral

Now, an international group of researchers including UIC professor of chemistry Petr Kral, have designed new anti-viral nanoparticles that bind to a range of viruses, including herpes simplex virus, human papillomavirus, respiratory syncytial virus and Dengue and Lentiviruses. Unlike other broad-spectrum antivirals, which simply prevent viruses from infecting cells, the new nanoparticles destroy viruses.

The team's findings are reported in the journal Nature Materials.

The new nanoparticles mimic a cell surface protein called heparin sulfate proteoglycan (HSPG). A significant portion of viruses, including HIV, enter and infect healthy cells by first binding to HSPGs on the cell surface. Existing drugs that mimic HSPG bind to the virus and prevent it from binding to cells, but the strength of the bond is relatively weak. These drugs also can't destroy viruses, and the viruses can become reactivated when the drug concentration is decreased.

Kral and his colleagues, including Lela Vukovic, assistant professor of chemistry at the University of Texas at El Paso and an author on the paper, sought to design a new anti-viral nanoparticle based on HSPG, but one that would bind more tightly to viral particles and destroy them at the same time.

In order to custom-design the anti-viral nanoparticles, Kral and Vukovic's groups worked hand-in-hand with experimentalists, virus experts and biochemists from Switzerland, Italy, France and the Czech Republic.

"We knew the general composition of the HSPG-binding viral domains the nanoparticles should bind to, and the structures of the nanoparticles, but we did not understand why different nanoparticles behave so differently in terms of both binding strength and preventing viral entry into cells," said Kral.

Through elaborate simulations, Kral and colleagues helped solve these issues and guided the experimentalists in tweaking the nanoparticle design so that they worked better.

The researchers used advanced computational modeling techniques to generate precise structures of various target viruses and nanoparticles down to the location of each atom. A deep understanding of the interactions between individual groups of atoms within the viruses and nanoparticles allowed the researchers to estimate the strength and permanence of potential bonds that could form between the two entities, and helped them to predict how the bond could change over time and eventually destroy the virus.

The team's final "draft" of the anti-viral nanoparticle could bind irreversibly to a range of viruses, and caused lethal deformations to the viruses, but had no effect on healthy tissues or cells. In vitro experiments with the nanoparticles showed that they bound irreversibly to the herpes simplex virus, human papillomavirus, syncytial virus, Dengue virus and Lentivirus.

"We were able to provide the data needed to the design team so that they could develop a prototype of what we hope will be a very effective and safe broad-spectrum anti-viral that can be used to save lives," said Kral.

###

Soumyo Sen and Yanxiao Han of the University of Illinois at Chicago; Valeria Cagno, David Lembo and Manuela Donalisimo of the Univerisita degli Studi di Torino, Italy; Paulo Jacob Silva, Marie Mueller, Samuel Jones, Emma-Rose Janecek, Ahmet Bekdemir and Francesco Stellacci of Ecole Polytechnique Federale de Lausanne, Switzerland; Caroline Tapparel of Faculty of Medicine of Geneva; Patrizia Andreozzi and Chiara Martinelli of the FIRC Institute of Molecular Oncology, Italy; Marco D'Alicarnasso of Fondazione Centro Europeo Nanomedicina, Italy; Marie Galloux and Ronan Le Goffic, Universite Paris-Saclay, France; Marta Vallino, Istituto per la Protezione Sostenibile delle Piante, Italy; Jan Hodek and Jan Weber, Academy of Science of the Czech Republic; Barbara Sanavio and Silke Krol, Fondazione IRCCS Istituto Neurologico, Italy; Marie-Anne Rameix Welti, UFR des Sciences del la Sante Simone Veil, France; Laurent Kaiser and Caroline Tapparel, Geneva University Hospitals, are co-authors on the paper.

This research was supported by a Swiss National Science Foundation NRP 64 grant, the National Centers of Competence in Research on Bio-Inspired Materials, the University of Turin, the Ministry of Education, Youth and Sports of the Czech Republic, the Leenards Foundation, National Science Foundation award DMR-1506886 and funding from the University of Texas at El Paso.

Media Contact

Jackie Carey
jmcarey@uic.edu
312-996-8277

 @uicnews

http://www.uic.edu 

Jackie Carey | EurekAlert!

More articles from Life Sciences:

nachricht Cancer diagnosis: no more needles?
25.05.2018 | Christian-Albrechts-Universität zu Kiel

nachricht Less is more? Gene switch for healthy aging found
25.05.2018 | Leibniz-Institut für Alternsforschung - Fritz-Lipmann-Institut e.V. (FLI)

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Powerful IT security for the car of the future – research alliance develops new approaches

The more electronics steer, accelerate and brake cars, the more important it is to protect them against cyber-attacks. That is why 15 partners from industry and academia will work together over the next three years on new approaches to IT security in self-driving cars. The joint project goes by the name Security For Connected, Autonomous Cars (SecForCARs) and has funding of €7.2 million from the German Federal Ministry of Education and Research. Infineon is leading the project.

Vehicles already offer diverse communication interfaces and more and more automated functions, such as distance and lane-keeping assist systems. At the same...

Im Focus: Molecular switch will facilitate the development of pioneering electro-optical devices

A research team led by physicists at the Technical University of Munich (TUM) has developed molecular nanoswitches that can be toggled between two structurally different states using an applied voltage. They can serve as the basis for a pioneering class of devices that could replace silicon-based components with organic molecules.

The development of new electronic technologies drives the incessant reduction of functional component sizes. In the context of an international collaborative...

Im Focus: LZH showcases laser material processing of tomorrow at the LASYS 2018

At the LASYS 2018, from June 5th to 7th, the Laser Zentrum Hannover e.V. (LZH) will be showcasing processes for the laser material processing of tomorrow in hall 4 at stand 4E75. With blown bomb shells the LZH will present first results of a research project on civil security.

At this year's LASYS, the LZH will exhibit light-based processes such as cutting, welding, ablation and structuring as well as additive manufacturing for...

Im Focus: Self-illuminating pixels for a new display generation

There are videos on the internet that can make one marvel at technology. For example, a smartphone is casually bent around the arm or a thin-film display is rolled in all directions and with almost every diameter. From the user's point of view, this looks fantastic. From a professional point of view, however, the question arises: Is that already possible?

At Display Week 2018, scientists from the Fraunhofer Institute for Applied Polymer Research IAP will be demonstrating today’s technological possibilities and...

Im Focus: Explanation for puzzling quantum oscillations has been found

So-called quantum many-body scars allow quantum systems to stay out of equilibrium much longer, explaining experiment | Study published in Nature Physics

Recently, researchers from Harvard and MIT succeeded in trapping a record 53 atoms and individually controlling their quantum state, realizing what is called a...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

In focus: Climate adapted plants

25.05.2018 | Event News

Save the date: Forum European Neuroscience – 07-11 July 2018 in Berlin, Germany

02.05.2018 | Event News

Invitation to the upcoming "Current Topics in Bioinformatics: Big Data in Genomics and Medicine"

13.04.2018 | Event News

 
Latest News

In focus: Climate adapted plants

25.05.2018 | Event News

Flow probes from the 3D printer

25.05.2018 | Machine Engineering

Less is more? Gene switch for healthy aging found

25.05.2018 | Life Sciences

VideoLinks
Science & Research
Overview of more VideoLinks >>>