Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Desert ants: Same behavior outdoors and in the lab

16.02.2017

A spherical treadmill allows biologists to investigate how desert ants find their way in a featureless environment

These desert ants live in salt pans and are ideal models for navigation research. When they set out in search of food in their flat, bare, hostile environment, they are nevertheless always able to find their way back to their nest on the shortest route possible.


Desert ant in the spherical treadmill.

Photo: Matthias Wittlinger

They have an internal navigation system. The ants measure the distance they have gone by recording how many steps they have taken - and they use the sun for directional orientation, taking into account its movement over time via their own internal clock. A team of researchers led by Dr. Matthias Wittlinger of the University of Freiburg developed a tiny treadmill, on which the ants behave just as they do in the wild.

“This gives us almost unlimited possibilities to test the mechanisms and neural basis of our model animal’s spatial orientation and navigation - in the laboratory,” says Wittlinger. “We can place the ants in a virtual world and incorporate certain changes into it to see how they react.” The the experiments are expected to yield information which will be useful in the development of autonomous robots as well as in other areas. The team of biologists published their results in the Journal of Experimental Biology.

The ant treadmill is like a ball on top of which the insect can walk around, a bit like a hamster in a wheel. To the ant, it is like walking in its normal environment - although it doesn’t really go anywhere. The team developed the spherical treadmill in such a way that it enables the ant to walk using a natural gait, even when moving and changing direction quickly. The spherical treadmill contains optical sensors - like those in a computer mouse - which record precisely the ant’s direction and speed.

In the experiments the ant initially travels some ten meters from its nest - whether in the field or in the laboratory - storing information about the path it has taken. Then the researchers place it into the treadmill. The ant then moves exactly as it would if it were returning to its nest. It first heads back to the nest as directly as possible.

Once it has arrived in the general area of the nest, the ant switches to search mode, taking a meandering path so as to find the exact location. The biologists have observed that the ants adapt their speed to the relevant phase of their journey - fast on the initial homeward trip, then slow in the searching phase. Comparisons between the virtual journey inside the treadmill and the necessary trip on the ground show that the insects have a high-precision navigation system.

Original publication:
Hansjuergen Dahmen, Verena Luisa Wahl, Sarah Elisabeth Pfeffer, Hanspeter Mallot, and Matthias Wittlinger (2017): Naturalistic path integration of Cataglyphis desert ants on an air cushioned light-weight spherical treadmill. In: Journal of Experimental Biology 220/4.


Experiment on video: A desert ant heads home
https://www.youtube.com/watch?v=PztO2h6pMzo

Contact:
Dr. Matthias Wittlinger
Institute of Biology I, Neurobiology
University of Freiburg
Phone: 0761/203-2667
Email: matthias.wittlinger@biologie.uni-freiburg.de

Rudolf-Werner Dreier | Albert-Ludwigs-Universität Freiburg im Breisgau
Further information:
http://www.uni-freiburg.de/

More articles from Life Sciences:

nachricht Warming ponds could accelerate climate change
21.02.2017 | University of Exeter

nachricht An alternative to opioids? Compound from marine snail is potent pain reliever
21.02.2017 | University of Utah

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Breakthrough with a chain of gold atoms

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

Im Focus: DNA repair: a new letter in the cell alphabet

Results reveal how discoveries may be hidden in scientific “blind spots”

Cells need to repair damaged DNA in our genes to prevent the development of cancer and other diseases. Our cells therefore activate and send “repair-proteins”...

Im Focus: Dresdner scientists print tomorrow’s world

The Fraunhofer IWS Dresden and Technische Universität Dresden inaugurated their jointly operated Center for Additive Manufacturing Dresden (AMCD) with a festive ceremony on February 7, 2017. Scientists from various disciplines perform research on materials, additive manufacturing processes and innovative technologies, which build up components in a layer by layer process. This technology opens up new horizons for component design and combinations of functions. For example during fabrication, electrical conductors and sensors are already able to be additively manufactured into components. They provide information about stress conditions of a product during operation.

The 3D-printing technology, or additive manufacturing as it is often called, has long made the step out of scientific research laboratories into industrial...

Im Focus: Mimicking nature's cellular architectures via 3-D printing

Research offers new level of control over the structure of 3-D printed materials

Nature does amazing things with limited design materials. Grass, for example, can support its own weight, resist strong wind loads, and recover after being...

Im Focus: Three Magnetic States for Each Hole

Nanometer-scale magnetic perforated grids could create new possibilities for computing. Together with international colleagues, scientists from the Helmholtz Zentrum Dresden-Rossendorf (HZDR) have shown how a cobalt grid can be reliably programmed at room temperature. In addition they discovered that for every hole ("antidot") three magnetic states can be configured. The results have been published in the journal "Scientific Reports".

Physicist Dr. Rantej Bali from the HZDR, together with scientists from Singapore and Australia, designed a special grid structure in a thin layer of cobalt in...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Booth and panel discussion – The Lindau Nobel Laureate Meetings at the AAAS 2017 Annual Meeting

13.02.2017 | Event News

Complex Loading versus Hidden Reserves

10.02.2017 | Event News

International Conference on Crystal Growth in Freiburg

09.02.2017 | Event News

 
Latest News

Impacts of mass coral die-off on Indian Ocean reefs revealed

21.02.2017 | Earth Sciences

Novel breast tomosynthesis technique reduces screening recall rate

21.02.2017 | Medical Engineering

Use your Voice – and Smart Homes will “LISTEN”

21.02.2017 | Trade Fair News

VideoLinks
B2B-VideoLinks
More VideoLinks >>>