Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Desert ants: Same behavior outdoors and in the lab

16.02.2017

A spherical treadmill allows biologists to investigate how desert ants find their way in a featureless environment

These desert ants live in salt pans and are ideal models for navigation research. When they set out in search of food in their flat, bare, hostile environment, they are nevertheless always able to find their way back to their nest on the shortest route possible.


Desert ant in the spherical treadmill.

Photo: Matthias Wittlinger

They have an internal navigation system. The ants measure the distance they have gone by recording how many steps they have taken - and they use the sun for directional orientation, taking into account its movement over time via their own internal clock. A team of researchers led by Dr. Matthias Wittlinger of the University of Freiburg developed a tiny treadmill, on which the ants behave just as they do in the wild.

“This gives us almost unlimited possibilities to test the mechanisms and neural basis of our model animal’s spatial orientation and navigation - in the laboratory,” says Wittlinger. “We can place the ants in a virtual world and incorporate certain changes into it to see how they react.” The the experiments are expected to yield information which will be useful in the development of autonomous robots as well as in other areas. The team of biologists published their results in the Journal of Experimental Biology.

The ant treadmill is like a ball on top of which the insect can walk around, a bit like a hamster in a wheel. To the ant, it is like walking in its normal environment - although it doesn’t really go anywhere. The team developed the spherical treadmill in such a way that it enables the ant to walk using a natural gait, even when moving and changing direction quickly. The spherical treadmill contains optical sensors - like those in a computer mouse - which record precisely the ant’s direction and speed.

In the experiments the ant initially travels some ten meters from its nest - whether in the field or in the laboratory - storing information about the path it has taken. Then the researchers place it into the treadmill. The ant then moves exactly as it would if it were returning to its nest. It first heads back to the nest as directly as possible.

Once it has arrived in the general area of the nest, the ant switches to search mode, taking a meandering path so as to find the exact location. The biologists have observed that the ants adapt their speed to the relevant phase of their journey - fast on the initial homeward trip, then slow in the searching phase. Comparisons between the virtual journey inside the treadmill and the necessary trip on the ground show that the insects have a high-precision navigation system.

Original publication:
Hansjuergen Dahmen, Verena Luisa Wahl, Sarah Elisabeth Pfeffer, Hanspeter Mallot, and Matthias Wittlinger (2017): Naturalistic path integration of Cataglyphis desert ants on an air cushioned light-weight spherical treadmill. In: Journal of Experimental Biology 220/4.


Experiment on video: A desert ant heads home
https://www.youtube.com/watch?v=PztO2h6pMzo

Contact:
Dr. Matthias Wittlinger
Institute of Biology I, Neurobiology
University of Freiburg
Phone: 0761/203-2667
Email: matthias.wittlinger@biologie.uni-freiburg.de

Rudolf-Werner Dreier | Albert-Ludwigs-Universität Freiburg im Breisgau
Further information:
http://www.uni-freiburg.de/

More articles from Life Sciences:

nachricht A Map of the Cell’s Power Station
18.08.2017 | Albert-Ludwigs-Universität Freiburg im Breisgau

nachricht On the way to developing a new active ingredient against chronic infections
21.08.2017 | Deutsches Zentrum für Infektionsforschung

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Fizzy soda water could be key to clean manufacture of flat wonder material: Graphene

Whether you call it effervescent, fizzy, or sparkling, carbonated water is making a comeback as a beverage. Aside from quenching thirst, researchers at the University of Illinois at Urbana-Champaign have discovered a new use for these "bubbly" concoctions that will have major impact on the manufacturer of the world's thinnest, flattest, and one most useful materials -- graphene.

As graphene's popularity grows as an advanced "wonder" material, the speed and quality at which it can be manufactured will be paramount. With that in mind,...

Im Focus: Exotic quantum states made from light: Physicists create optical “wells” for a super-photon

Physicists at the University of Bonn have managed to create optical hollows and more complex patterns into which the light of a Bose-Einstein condensate flows. The creation of such highly low-loss structures for light is a prerequisite for complex light circuits, such as for quantum information processing for a new generation of computers. The researchers are now presenting their results in the journal Nature Photonics.

Light particles (photons) occur as tiny, indivisible portions. Many thousands of these light portions can be merged to form a single super-photon if they are...

Im Focus: Circular RNA linked to brain function

For the first time, scientists have shown that circular RNA is linked to brain function. When a RNA molecule called Cdr1as was deleted from the genome of mice, the animals had problems filtering out unnecessary information – like patients suffering from neuropsychiatric disorders.

While hundreds of circular RNAs (circRNAs) are abundant in mammalian brains, one big question has remained unanswered: What are they actually good for? In the...

Im Focus: RAVAN CubeSat measures Earth's outgoing energy

An experimental small satellite has successfully collected and delivered data on a key measurement for predicting changes in Earth's climate.

The Radiometer Assessment using Vertically Aligned Nanotubes (RAVAN) CubeSat was launched into low-Earth orbit on Nov. 11, 2016, in order to test new...

Im Focus: Scientists shine new light on the “other high temperature superconductor”

A study led by scientists of the Max Planck Institute for the Structure and Dynamics of Matter (MPSD) at the Center for Free-Electron Laser Science in Hamburg presents evidence of the coexistence of superconductivity and “charge-density-waves” in compounds of the poorly-studied family of bismuthates. This observation opens up new perspectives for a deeper understanding of the phenomenon of high-temperature superconductivity, a topic which is at the core of condensed matter research since more than 30 years. The paper by Nicoletti et al has been published in the PNAS.

Since the beginning of the 20th century, superconductivity had been observed in some metals at temperatures only a few degrees above the absolute zero (minus...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Call for Papers – ICNFT 2018, 5th International Conference on New Forming Technology

16.08.2017 | Event News

Sustainability is the business model of tomorrow

04.08.2017 | Event News

Clash of Realities 2017: Registration now open. International Conference at TH Köln

26.07.2017 | Event News

 
Latest News

Heating quantum matter: A novel view on topology

22.08.2017 | Physics and Astronomy

Stretchable biofuel cells extract energy from sweat to power wearable devices

22.08.2017 | Power and Electrical Engineering

New technique to treating mitral valve diseases: First patient data

22.08.2017 | Medical Engineering

VideoLinks
B2B-VideoLinks
More VideoLinks >>>