Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Dependency can be an evolutionary advantage

07.11.2016

It is generally assumed that it is a good strategy for any kind of organism to be as independent from others as possible. A research team from the Max Planck Institute for Chemical Ecology in Jena, Germany, has now been able to show experimentally that quite the contrary may be the case: As a matter of fact, autonomous bacteria which lose their ability to produce certain amino acids autonomously gain an advantage by becoming dependent on others who provide these nutrients. This means that not only the acquisition of new traits, but also the loss of certain abilities drives the evolutionary adaptation of bacteria – and possibly also of other organisms – to their environment.

It has been known for quite some time that genetically modified bacteria, which have lost their ability to produce certain amino acids and retrieve these nutrients from their environment grow better than bacteria, which produce all nutrients themselves (see press release Division of Labor in the Test Tube, December 2, 2013).


Bacterial populations diversify into two genetically distinct populations: One retains biosynthetic capabilities and the other loses these functions. The latter thus becomes metabolically dependent.

Glen D’Souza, Christian Kost / Max Planck Institute for Chemical Ecology

This led Christian Kost, leader of the study and now professor at the University of Osnabrück, to inquire whether natural selection would favor the loss of abilities, thus making bacteria more dependent on their environment. To find out, Kost and his PhD student Glen D’Souza cultivated the gut bacterium Escherichia coli bacteria for several generations under optimal nutritious conditions. The culture was regularly transferred to a fresh nutrient solution, and during some of these transfers, a sample was taken to examine the bacterial capabilities and genes.

The results confirmed the assumption: A fraction of bacteria which had originally been autonomous lost their ability to produce metabolites, such as amino acids; they had become dependent on their environment which was enriched with these nutrients. “To our surprise, we found similar results when no nutrients had been added to the culture medium,” explained Glen D’Souza, the first author of the study. “The bacteria were divided into two groups: One group was still independent, whereas the other group had become dependent on these autonomous bacteria, which were still producing nutrients by themselves.”

A similar loss of traits has been observed not only in bacteria, but also in other groups of organisms. Many animals, including humans, are not able to produce vitamins themselves - they depend on their food or on vitamin-producing bacteria in their gut. Many pathogens need substances produced by their hosts in order to proliferate. Until now, it has been unclear why organisms would give up their autonomy and become dependent on others. This study now shows that the loss of capabilities may be evolutionarily advantageous and thus drive adaptation.

“There were further results we had not expected at all: When we studied the genome of the dependent bacteria, we found mutation not only in genes that are directly involved in the biosynthesis of amino acids, but also in genes, which regulate proteins that are involved in activating or inhibiting metabolic processes,” Christian Kost reports. This means that the adaptation of a bacterial population can be achieved in different ways. In the current study, this adaptation occurred only in one direction:

One group of bacteria became dependent on the other. However, the researchers are convinced that a longer testing period would have eventually resulted in mutual and more complex dependencies. Therefore, they plan to extend the duration of their experiment. Natural selection depends not only on the genetic endowment of a population, but also on its size. Depending on their lifestyle, natural bacterial populations differ considerably in size. Hence, the scientists want to find out how the size of bacterial populations affects the development of dependencies and the changes in the bacterial genomes.

A major problem in biological research is that most bacteria cannot be cultured under laboratory conditions. The results of the new study may explain why this is the case: Bacterial populations rapidly evolve metabolic dependencies on their environment by loosing the corresponding biosynthetic genes. Metagenomic analyses of environmental samples, which include the ecological interactions of microbial communities with their natural environments, may help solve this problem.

The experimental results are also relevant in more applied contexts: After all, bacterial communities play an important role in the health of plants, animals, and humans. Metabolic cooperation – that is, the question of how bacteria contribute to the exchange of metabolites – could become a decisive factor when bacterial communities are selected for application in agriculture or health care in order to support either growth or the defense against pathogens. [KG/AO]

Original Publication:
D’Souza, G., Kost, C. (2016). Experimental evolution of metabolic dependency in bacteria. PLOS Genetics. DOI: 10.1371/journal.pgen.1006364
http://dx.doi.org/10.1371/journal.pgen.1006364

Further Information:
Prof. Dr. Christian Kost, Abteilung Ökologie, Fachbereich Biologie, Universität Osnabrück, Barbarastraße 13, 49076 Osnabrück, Tel: Tel. +49 541 969-2853, E-Mail christiankost@gmail.com

Contact and Media Requests:
Angela Overmeyer M.A., Max Planck Institute for Chemical Ecology, Hans-Knöll-Str. 8, 07743 Jena, +49 3641 57-2110, E-Mail overmeyer@ice.mpg.de

Download high-resolution images via
http://www.ice.mpg.de/ext/downloads2016.html

Angela Overmeyer | Max-Planck-Institut für chemische Ökologie

More articles from Life Sciences:

nachricht Could this protein protect people against coronary artery disease?
17.11.2017 | University of North Carolina Health Care

nachricht Microbial resident enables beetles to feed on a leafy diet
17.11.2017 | Max-Planck-Institut für chemische Ökologie

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: A “cosmic snake” reveals the structure of remote galaxies

The formation of stars in distant galaxies is still largely unexplored. For the first time, astron-omers at the University of Geneva have now been able to closely observe a star system six billion light-years away. In doing so, they are confirming earlier simulations made by the University of Zurich. One special effect is made possible by the multiple reflections of images that run through the cosmos like a snake.

Today, astronomers have a pretty accurate idea of how stars were formed in the recent cosmic past. But do these laws also apply to older galaxies? For around a...

Im Focus: Visual intelligence is not the same as IQ

Just because someone is smart and well-motivated doesn't mean he or she can learn the visual skills needed to excel at tasks like matching fingerprints, interpreting medical X-rays, keeping track of aircraft on radar displays or forensic face matching.

That is the implication of a new study which shows for the first time that there is a broad range of differences in people's visual ability and that these...

Im Focus: Novel Nano-CT device creates high-resolution 3D-X-rays of tiny velvet worm legs

Computer Tomography (CT) is a standard procedure in hospitals, but so far, the technology has not been suitable for imaging extremely small objects. In PNAS, a team from the Technical University of Munich (TUM) describes a Nano-CT device that creates three-dimensional x-ray images at resolutions up to 100 nanometers. The first test application: Together with colleagues from the University of Kassel and Helmholtz-Zentrum Geesthacht the researchers analyzed the locomotory system of a velvet worm.

During a CT analysis, the object under investigation is x-rayed and a detector measures the respective amount of radiation absorbed from various angles....

Im Focus: Researchers Develop Data Bus for Quantum Computer

The quantum world is fragile; error correction codes are needed to protect the information stored in a quantum object from the deteriorating effects of noise. Quantum physicists in Innsbruck have developed a protocol to pass quantum information between differently encoded building blocks of a future quantum computer, such as processors and memories. Scientists may use this protocol in the future to build a data bus for quantum computers. The researchers have published their work in the journal Nature Communications.

Future quantum computers will be able to solve problems where conventional computers fail today. We are still far away from any large-scale implementation,...

Im Focus: Wrinkles give heat a jolt in pillared graphene

Rice University researchers test 3-D carbon nanostructures' thermal transport abilities

Pillared graphene would transfer heat better if the theoretical material had a few asymmetric junctions that caused wrinkles, according to Rice University...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Ecology Across Borders: International conference brings together 1,500 ecologists

15.11.2017 | Event News

Road into laboratory: Users discuss biaxial fatigue-testing for car and truck wheel

15.11.2017 | Event News

#Berlin5GWeek: The right network for Industry 4.0

30.10.2017 | Event News

 
Latest News

NASA detects solar flare pulses at Sun and Earth

17.11.2017 | Physics and Astronomy

NIST scientists discover how to switch liver cancer cell growth from 2-D to 3-D structures

17.11.2017 | Health and Medicine

The importance of biodiversity in forests could increase due to climate change

17.11.2017 | Studies and Analyses

VideoLinks
B2B-VideoLinks
More VideoLinks >>>