Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Departure of migratory birds from stopover sites is hormone-controlled

07.02.2017

Migratory birds stop along their long journeys replenishing their fat stores. To date, however, it had been unclear which physiological signals triggered the birds’ decision to continue their flight. A team led by researchers from Vetmeduni Vienna now identified, for the first time, the hormone ghrelin as a signal for the birds’ brains. Ghrelin was measured at high levels in satiated garden warblers. Additional ghrelin exhibited decreased appetite and increased the highly active state of migratory restlessness. The results, published in the journal PNAS, confirm hormonal influence on avian migratory behaviour and could even lead to an improved understanding of eating disorders among humans.

Every year, billions of migratory birds make their way back to Europe from their wintering quarters. Since their energy reserves are not enough for a non-stop flight, they put in stopovers along the way to rest and replenish their fat stores. That migratory birds must stop on their long journey is clear. But how long they rest and what signals tell the birds to continue on their way has so far been unclear.


Migratory birds like the garden warbler are hormone-controlled.

Wolfgang Goymann

A research team led by Leonida Fusani of the Konrad Lorenz Institute of Ethology at Vetmeduni Vienna and the Department of Cognitive Biology at the University of Vienna, together with Wolfgang Goymann of the Max Plank Institute for Ornithology in Seewiesen, could now demonstrate, for the first time, that the hormone ghrelin controls migratory behaviour. They were also able to show that a form of grehlin that had been considered to be an inactive form of the hormone is in fact much more influential than had previously been assumed.

Appetite-regulating hormone identified as departure signal

A network of hormones regulates the appetite in mammals. The hormones signal how much food we eat and when we have had enough. Besides leptin and cortisol, ghrelin has been identified as an especially important factor in appetite regulation. “The hormone was recently identified in birds as well. We therefore investigated whether it might also play a role in the behaviour of migratory birds,” explains Fusani. Through two experimental studies with the garden warbler Sylvia borin, the researchers found evidence that ghrelin functions as an indicator and a signal for the birds to continue their migratory journey.

On their stopover in the island of Ponza, Italy, the researchers first measured the fat stores and the ghrelin concentrations in the birds. The analysis revealed that concentrations of ghrelin circulating in the bloodstream of “fat” garden warblers were higher than in thinner birds. “The concentration of the hormone correlated very well with the birds’ body mass index,” says Goymann. The birds’ circulating hormone concentrations thus reflected their physical condition. Additionally, garden warblers in good physiological condition and with high ghrelin levels also were in a state of migratory restlessness. Even captive birds exhibit this urge to migrate at the appropriate time.

Inactive form of ghrelin also an active influential factor

Migratory restlessness also indicated the influence of ghrelin in the second experiment conducted by the research team. This behaviour, however, was triggered in the warblers by a form of ghrelin that had previously been considered to be inactive. “Two forms of ghrelin exist in the bloodstream: an acylated and an unacylated form. The latter had previously been considered to be the inactive form of the hormone,” says Fusani. The acylated form, which was considered to be the active form of the hormone, differs from the unacylated form in that it has an additional acyl group.

In a second experiment, the researchers injected the birds with different concentrations of the hormone. The acylated form of ghrelin had little effects on the animals; the unacylated form did, however, especially among animals who had not yet sufficiently replenished their energy reserves. Injections of “inactive” ghrelin decreased the appetite in the garden warblers but increased their activity, i.e. it triggered migratory restlessness.

Hormonal control of bird migration as food for thought for mammal research

The research results clearly demonstrated a hormonal trigger behind the decision of migratory birds to continue their journey. “We have thus identified an important factor behind migratory behaviour in addition to natural influences such as the weather and food availability,” says Goymann. But the results of the study could also contribute to a better understanding of the hormone’s function among mammals.
The evidence that the “inactive” form of ghrelin influences the behaviour of migratory birds indicates that the hormone may have alternative mechanisms. Even unacylated ghrelin can pass the blood-brain barrier. The unacylated form could possibly become activated and trigger a reaction in the central nervous system. “This could contribute to research, from a new perspective, into the regulation of food intake, metabolic disorders or obesity in people,” says Fusani.

Service:
The article “Ghrelin affects stopover decisions and food intake in a long-distance migrant” by Wolfgang Goymann, Sara Lupib, Hiroyuki Kaiya, Massimiliano Cardinale und Leonida Fusani was published in PNAS (Proceedings of the National Academy of Sciences of the United States of America).
DOI: 10.1073/pnas.1619565114

About the University of Veterinary Medicine, Vienna
The University of Veterinary Medicine, Vienna in Austria is one of the leading academic and research institutions in the field of Veterinary Sciences in Europe. About 1,300 employees and 2,300 students work on the campus in the north of Vienna which also houses five university clinics and various research sites. Outside of Vienna the university operates Teaching and Research Farms. http://www.vetmeduni.ac.at

Scientific Contact:
Leonida Fusani
Konrad-Lorenz Institute of Ethology
University of Veterinary Medicine Vienna (Vetmeduni Vienna)
Department of Cognitive Research
University Vienna
T +43 1 25077-7320
leonida.fusani@vetmeduni.ac.at
and
Wolfgang Goymann
Max-Planck-Institute for Ornithology, Seewiesen Germany
T +49 8157 932-301
goymann@orn.mpg.de

Released by:
Georg Mair
Science Communication / Corporate Communications
University of Veterinary Medicine Vienna (Vetmeduni Vienna)
T +43 1 25077-1165
georg.mair@vetmeduni.ac.at

Weitere Informationen:

http://www.vetmeduni.ac.at/en/infoservice/presseinformation/presseinformationen-...

Mag.rer.nat. Georg Mair | idw - Informationsdienst Wissenschaft

More articles from Life Sciences:

nachricht The “Holy Grail” of peptide chemistry: Making peptide active agents available orally
21.02.2018 | Technische Universität München

nachricht First line of defence against influenza further decoded
21.02.2018 | Helmholtz-Zentrum für Infektionsforschung

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: In best circles: First integrated circuit from self-assembled polymer

For the first time, a team of researchers at the Max-Planck Institute (MPI) for Polymer Research in Mainz, Germany, has succeeded in making an integrated circuit (IC) from just a monolayer of a semiconducting polymer via a bottom-up, self-assembly approach.

In the self-assembly process, the semiconducting polymer arranges itself into an ordered monolayer in a transistor. The transistors are binary switches used...

Im Focus: Demonstration of a single molecule piezoelectric effect

Breakthrough provides a new concept of the design of molecular motors, sensors and electricity generators at nanoscale

Researchers from the Institute of Organic Chemistry and Biochemistry of the CAS (IOCB Prague), Institute of Physics of the CAS (IP CAS) and Palacký University...

Im Focus: Hybrid optics bring color imaging using ultrathin metalenses into focus

For photographers and scientists, lenses are lifesavers. They reflect and refract light, making possible the imaging systems that drive discovery through the microscope and preserve history through cameras.

But today's glass-based lenses are bulky and resist miniaturization. Next-generation technologies, such as ultrathin cameras or tiny microscopes, require...

Im Focus: Stem cell divisions in the adult brain seen for the first time

Scientists from the University of Zurich have succeeded for the first time in tracking individual stem cells and their neuronal progeny over months within the intact adult brain. This study sheds light on how new neurons are produced throughout life.

The generation of new nerve cells was once thought to taper off at the end of embryonic development. However, recent research has shown that the adult brain...

Im Focus: Interference as a new method for cooling quantum devices

Theoretical physicists propose to use negative interference to control heat flow in quantum devices. Study published in Physical Review Letters

Quantum computer parts are sensitive and need to be cooled to very low temperatures. Their tiny size makes them particularly susceptible to a temperature...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

2nd International Conference on High Temperature Shape Memory Alloys (HTSMAs)

15.02.2018 | Event News

Aachen DC Grid Summit 2018

13.02.2018 | Event News

How Global Climate Policy Can Learn from the Energy Transition

12.02.2018 | Event News

 
Latest News

Atomic structure of ultrasound material not what anyone expected

21.02.2018 | Materials Sciences

'Icebreaker' protein opens genome for t cell development, Penn researchers find

21.02.2018 | Health and Medicine

MEMS chips get metatlenses

21.02.2018 | Physics and Astronomy

VideoLinks
Science & Research
Overview of more VideoLinks >>>